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Production and Convergence of Multiscale
Clustering in Speech

Drew H. Abney, Christopher T. Kello, and Anne S. Warlaumont
Cognitive and Information Sciences

University of California, Merced

Language entails the scaling of variability across levels of measurement—small

linguistic variations occur at the millisecond level, larger variations occur at the next

level, and even larger variations occur over longer timescales. For acoustic onsets in

speech signals, small temporal variations occur at the phonetic level, larger

variations occur at the phrasal level, and even larger variations occur at the

conversational level. Scaling across levels ofmeasurement can be quantified in terms

of power law distributions. In this article we review recent investigations into power

law clustering of acoustic speech onsets. Studies demonstrate that the multiscale

clustering in onsets reflects communicative aspects of speech in adult conversations

as well as infant vocalizations. We also review evidence that multiscale clustering in

the vocalizations of individuals converges during vocal interactions. We relate

multiscale convergence to the notion of complexity matching, that is, the hypothesis

that maximal information transfer occurs when the power laws of 2 interacting

complex systems are matched. We conclude by discussing potential extensions of

this work including estimating the multifractal structure of speech and testing the

maximal information transfer prediction of complexity matching.

Language displays hierarchically nested structures: phonemes are nested in

syllables, syllables in words, words in phrases, phrases in sentences, and

sentences in discourse. One consequence of this hierarchy is that the variability
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within the system scales across levels of measurement (Bak, 1996;

Bassingthwaighte, Liebovitch, & West, 2013; Kello, Beltz, Holden, & Van

Orden, 2007; Kelso, 1997; Van Orden, Holden, & Turvey, 2003). Consider the

variability in timing of acoustic onsets during speech production: small variations

occur in small clusters of onsets over tens of milliseconds, larger variations in

larger clusters spanning hundreds of milliseconds, and even larger variations

occur over minutes and longer periods of time. Variability of measured behavior

that scales across levels of measurement is indicative of a type of nonlinear

relation, a power law, and such power laws emerge for systems exhibiting

hierarchically nested structures like language (Mandelbrot, 1983).

In this article, we discuss the multiscale patterns of vocalization variability

that humans produce when using language in conversational speech and also in

the vocalizations produced by infants and caregivers. In doing so, we emphasize

the idea that hierarchical structure in language can be expressed as the temporal

clustering in speech across multiple temporal levels of analysis, where temporal

clustering is measured in terms of the timing of acoustic onsets. The sections that

follow emphasize the degree to which clustering in acoustic onsets grows with

timescale, a term we call multiscale clustering, in human vocalizations.

We discuss how multiscale clustering might emerge and advance through

development and how multiscale clustering of vocalizations converges during

vocal interactions, as theorized and measured by complexity matching.

MULTISCALE CLUSTERING IN SPEECH ACOUSTICS

Because language has temporally nested organization, such as phonetic

boundaries within phrasal boundaries within conversational turns (Pickering &

Garrod, 2004), there is good reason to also expect multiscale clustering of

acoustic onsets in conversational speech. For example, Figure 1 illustrates how

amplitude-based acoustic onsets from one interlocutor’s speech (black vertical

lines above each of the three waveforms) can cluster across multiple timescales

during conversation. Notice that there are clusters of acoustic onsets at all three

scales, that is, sets of onsets that occur in close temporal proximity relative to a

given timescale. These sets may consist of only a handful of onsets at small

timescales or dozens or hundreds of onsets at longer timescales. For instance, the

top waveform shows a 10-min span of speech. A cluster may consist of hundreds

of onsets at this timescale reflecting a speaking turn. The middle waveform shows

a 2-min span of speech. A cluster may consist of dozens of onsets at this timescale

reflecting an utterance. Finally, the bottom waveform shows a 20-s span of

speech. A cluster may consist of 10 or 20 onsets at this timescale reflecting a

sentence or a phrase. At even smaller timescales (not pictured) we could see

clusters of onsets reflecting temporal patterning of syllables.
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We can measure if, and to what degree, temporal clustering of onsets exists at

multiple timescales by estimating whether clustering is related to timescale by a

power law function (see Clauset, Shalizi, & Newman, 2009). A power law

function expresses one variable as a nonlinear function of another variable

raised to a power, for example, A(T) , T a. In this case, in correspondence with

the three timescales depicted in Figure 1, T is a particular timescale (e.g., 20 s,

2m, 10m) and A(T) is the coefficient of variability of acoustic events at that

particular timescale. The scaling exponent, a, can be determined by plotting the

timescales on a logged x-axis and coefficient of variability on a logged y-axis

and then estimating the slope from a regression line. If the function observed

is linear, the slope corresponds to a. It should be noted that most power law

analyses systematically increase the window size by successive exponents with

a constant base, for example, 21, 22, 23, 24, and so on. Different types of power

law functions vary along many dimensions such as the unit of analysis (e.g.,

event-based or interval-based) and the type of scale (e.g., temporal scale or a

spatial scale). These dimensions can constrain the properties of a phenomenon

researchers might target. A suitable analysis is required to measure the temporal

clustering in speech across multiple temporal scales. The Allan Factor (AF)

analysis (Allan, 1966) has been recently applied as a tool for measuring if, and

to what degree, a speaker’s time series of acoustic events exhibited multiscale

clustering.

FIGURE 1 An example conversational speech signal shown at three different temporal

scales, 10min (top), 2min (middle), and 20 s (bottom). Figure adapted from Abney, Paxton,

Dale, and Kello (2014), Journal of Experimental Psychology: General.
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We now provide an informal description of the AF analysis. For the interested

reader, we have included a formal description of the AF analysis in the Appendix.

The AF analysis takes a binary spike train and estimates event-based variation

over a range of temporal windows (i.e., timescales). For our purposes, the binary

spike train consists of 0s and 1s, where 1s are when acoustic onsets occurred in

the event series. The AF estimates are then logarithmically plotted on the y-axis

and the corresponding temporal window is logarithmically plotted on the x-axis.

Multiscale clustering of acoustic onsets is exhibited if an estimated slope of a

regression line, a, is greater than a , 0. The null hypothesis for the AF analysis

is that the slope is a , 0, which would indicate that the clustering of acoustic

onsets does not scale across timescales. In other words, an a that is greater than

,0 is indicative of an event series with variability that scales over time, whereas

an a ,0 is indicative of an event series with variability that does not scale over

time. More formally, the sequence of acoustic onsets is a fractal point process if

0 , a , 3 and a homogeneous Poisson process if a , 0 (Lowen & Teich, 1996).

AF is the event-based analog (Viswanathan, Peng, Stanley, & Goldberger, 1997)

to spectral analysis and detrended fluctuation analysis (DFA; Peng, Havlin,

Stanley, & Goldberger, 1995). Spectral and DFA analyses are the standard

methods for measuring long-range correlations in cognitive and behavioral

processes.

Recent work in our lab found evidence of multiscale clustering in

conversational speech signals (Abney, Paxton, Dale, & Kello, 2014) from

reanalyzing data from Paxton and Dale (2013). In Paxton and Dale, two adult

participants were instructed to have one 10-min conversation about their favorite

movies, music, books (affiliative conversation), and one 10-min conversation

about a controversial topic on which they had opposing opinions (e.g., opinions

about the death penalty; argumentative conversation). During both types of

conversation, the participants produced patterns of acoustic energy that clustered

across temporal scales (see Figure 1). We used AF analysis to measure the

variation of event clustering of acoustic onsets, AF(T), across multiple

timescales, T. The smallest timescale was T ¼ 160ms, and the largest timescale

was T ¼ 41 s. We found that the variation of temporal clustering of acoustic

onsets scaled across timescales (160ms to 41 s) that approximate levels of

linguistic representation such as phonetic, lexical, semantic, and discourse levels

(Pickering & Garrod, 2004). Notably, we also found that multiscale clustering of

vocalizations differed as a function of the type of conversation two people were

having. The scaling exponent, a, was larger for argumentative (a ¼ .63) than for

affiliative (a ¼ .53) conversations, indicating more multiscale clustering, in the

speech data, for the argumentative conversations. These results suggest that

the onset and clustering of low-level acoustic energy are constrained by, and

sensitive to, linguistic context. These results also suggest that in general the onset

and clustering of conversational speech is non-Poisson and fractal in nature.
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Investigating the multiscale dynamics of speech by estimating the multiscale

clustering of acoustic onsets is a relatively new research direction. However,

previous research with similar intuitions about the multiscale dynamics of speech

and language focused on the coupling of multiple frequencies of speech

production as oscillatory dynamical systems. Cummins and Port (1998) used a

phrase repetition task and observed phase coupling of oscillators at the levels of

phrase and foot. Tilsen (2009) observed rhythmic-gestural covariability across

gestural units and prosodic units like phrase, foot, and syllable. These studies

focused on specific rhythmic units, perceptual centers or p-centers, which are

beatlike events estimated at the halfway point of the sonority rise toward a

nuclear vowel. From p-centers, rhythmic oscillatory models can be constructed.

To date, the unit of measurement for temporal clustering has been the onset

of an acoustic event defined either by an amplitude threshold, pitch, or a

combination of these properties. We have seen similar scaling patterns across

acoustic events derived from all of these properties. The fact that we observed

similar scaling patterns in our AF analyses for various types of acoustic events

indicates that the observed multiscale clustering may not be too sensitive to how

vocalization onset is defined. Nevertheless, more work is needed to understand

the relationship between temporal clustering in acoustic onsets and linguistic

units of analysis (e.g., see Kohler, 2008).

THE EMERGENCE OF MULTISCALE CLUSTERING OF
PRELINGUISTIC VOCALIZATIONS

Additional work has focused on the emergence of multiscale clustering in infant

speech development. A number of previous studies have documented infants’

perceptual sensitivity to hierarchical structure in auditory stimuli including

naturally occurring sounds (Gervain, Werker, & Geffen, 2014), speech (Hirsh-

Pasek et al., 1987; Jusczyk et al., 1992), and even music (Fernald & Kuhl, 1987).

One of the only published studies on infant production of hierarchically clustered

vocalizations was conducted by Lynch, Oller, Steffens, and Buder (1995).

In Lynch et al., infant vocalizations were recorded during free play, and

utterances and syllables were later located by trained adult judges. The numeric

timings of the utterances were printed out and given to untrained adult judges,

who were tasked with bracketing the utterances that went together while listening

to the recordings. The overall results from Lynch et al. were that prelinguistic

infants’ vocalizations span multiple scales of organization, from syllables, to

utterances, to prelinguistic phrases. Therefore, even from very young ages, there

is increasing evidence that speech perception and production is sensitive to

multiscale patterns and multiscale patterns are present in prelinguistic vocal

productions.
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Methods and tools identifying hierarchical structure, multiscale clustering,

and long-range correlations of human behavior have advanced considerably since

Lynch et al. (1995), and our lab has focused efforts on a large-scale longitudinal

corpus of infant-caregiver interactions (see also Johnson et al., 2013). From AF

analysis of approximately 8,500 hr of recordings from 15 infant-adult dyads

across the infants’ first 2 years of life, we have found evidence for the multiscale

clustering of prelinguistic vocal production (Abney, Warlaumont, Oller, Wallot,

& Kello, 2015). Multiscale clustering is evident in all the recordings, including in

the very youngest infant’s recording, made at 11 days old. The timescales of this

analysis spanned from ,10 s to ,1.5 hr, so reflect clustering at relatively larger

timescales. In a longitudinal case study (Abney, Warlaumont, Haussman, Ross,

& Wallot, 2014) of one of the infants, the largest change in the multiscale

clustering of prelinguistic vocalizations directly preceded her parents’

observations of canonical babbling. Canonical babbling is the production of

syllables containing both consonant and vowel sounds and is considered an

important prelinguistic vocal milestone (Oller, 2000; Patten et al., 2014). Overall,

it is clear that infants have the capacity to produce nonrandom, multiscale

clustered prelinguistic vocalizations at a very early age. This capacity may be

important for language acquisition.

THE CONVERGENCE OF MULTISCALE CLUSTERING IN SPEECH
ACOUSTICS

Our previous work established that the production of speech across a wide range

of ages follows a pattern of multiscale clustering. A natural progression is to

consider if the multiscale structures produced by two individuals during an

interaction become correlated with each other. Previous studies established that,

during dialogue, interlocutors match1 properties of phonetic productions (Pardo,

2006, 2013), speech pauses (Capella & Planalp, 1981), syntactic structures

(Bock, 1986), and lexical expressions of confidence (Fusaroli et al., 2012), and so

on. Pickering and Garrod’s (2004) interactive alignment model provides a

framework for alignment within and across linguistic levels.

We extended AF analysis of multiscale clustering in speech to measure

alignment of interlocutors across linguistic levels (Abney, Paxton, et al., 2014).

Our analyses were inspired by recent theoretical work showing that maximal

information exchange can occur between coupled complex systems, a

phenomenon termed complexity matching (West, Geneston, & Grigolini, 2008;

1Alternatively known as alignment, convergence, coordination, entrainment, and so on (Louwerse,

Dale, Bard, & Jeuniaux, 2012).
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see also Aquino, Bologna, West, & Grigolini, 2011). In modeling the interaction

of two complex networks, West and colleagues (e.g., Aquino et al., 2011) showed

that maximal information transmission occurs when both systems exhibit the

complex scaling patterns of 1/f-noise. If the two systems did not match scaling

patterns, information transmission was not maximal and reduced as a function

of the degree of matching. West and colleagues’ formulation of complexity

matching corresponds to a general hypothesis that organisms perceive and

coordinate behaviors by exploiting invariant properties of the environment that

include complex scaling patterns similar to what the AF analysis among other

fractal and multifractal analyses measures. Therefore, the notion of complexity

matching has been extended since West and colleagues’ initial work to include

the general hypothesis that organisms can synchronize and coordinate their

behaviors with complex scaling patterns produced by their environments and

other organisms. Cognitive scientists have begun using the concept of complexity

matching to study human interaction across various experimental contexts and

behavioral modalities (Abney, Paxton, et al., 2014; Coey, Washburn, &

Richardson, 2014; Marmelat & Delignières, 2012; Paxton, Abney, Kello, & Dale,

2013).

In the same study discussed earlier (The Multiscale Clustering of Speech

Production section), Abney, Paxton, et al. (2014) used AF analysis to measure the

matching between multiscale speech structures produced by individuals in

conversations. We found more matching for dyads in the affiliative conversation

beyond what would be expected by chance based on a surrogate analysis. Above

chance AF matching did not occur for dyads in the argumentative conversation.

In other words, convergence of multiscale clustering of speech production only

occurred for people in the affiliative conversation. Similar to how the multiscale

structure of speech production was sensitive to conversational context, this work

suggests that the amount of complexity matching is also context specific. Future

work should further explore contextual differences in complexity matching.

For infant-caregiver interactions (Abney et al., 2015), there is also evidence

for matching of multiscale clustering in prelinguistic vocalizations produced by

infants with those produced by their caregivers. Notably, there is more

complexity matching for speech-related vocalizations (speech, nonword babble,

and singing) relative to nonspeechlike vocalizations (laughing, crying, burping,

and coughing), suggesting that the matching process is sensitive to different types

of vocal behaviors.

Recent empirical efforts applying the concept of complexity matching to

human interaction has focused on the contexts where complexitymatching occurs.

However, one prediction of complexity matching (West et al., 2008) is that

information transfer between two complex systems is maximal when the

complexities of the systems are strongly coupled. Less work has focused on this

prediction. In a reanalysis of speech signals similar to Abney, Paxton, et al. (2014)
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from a joint perceptual decision-making task where dyads collaborated to make

visual discrimination judgments (Bahrami et al., 2010), Fusaroli, Abney,

Bahrami, Kello, and Tylén (2013) found that complexity matching correlated with

higher performance on the task. These results suggest that stronger convergence of

multiscale structure of vocal productions between interlocutors may have led to

higher performance by facilitating information transfer. Additional work is

necessary to test the prediction of maximal information transfer across strongly

coupled complex systems as well as to relate mathematical notions of information

transfer to more linguistic conceptions of semantic information transfer.

FUTURE DIRECTIONS

There is growing evidence for the multiscale clustering of speech production akin

to other observations of similar complex patterns of human behavior including

postural sway (Collins & De Luca, 1994; Delignières, Torre, & Bernard, 2011;

Kelty-Stephen & Dixon, 2013), walking (Hausdorff et al., 2001; Marmelat,

Delignières, Torre, Beek, & Daffertshofer, 2014), and exploratory movements of

eyes (Aks, Zelinsky, & Sprott, 2002; Rhodes, Kello, & Kerster, 2014; Stephen &

Mirman, 2010) and body (Palatinus, Kelty-Stephen, Kinsella-Shaw, Carello, &

Turvey, 2014; Stephen, Arzamarski, & Michaels, 2010; Stephen & Hajnal,

2011). Specifically, the property of multiscale clustering of speech production

adds to a list of power law functions in language behaviors such as frequencies of

word usage (Zipf, 1949); temporal clustering of letters, words, and topics in text

(Altmann, Cristadoro, & Esposti, 2012); and fluctuations in speech dynamics

(Holden & Rajaraman, 2012; Kello, Anderson, Holden, & Van Orden, 2008).

Our analysis of speech signals has thus far considered a single power law

scaling of clustered onsets of speech during human interaction. As discussed

earlier, the AF is the point process analog to the interval-based analysis of DFA,

which estimates the monofractal structure of a time series signal. The estimate of

a monofractal structure in a system provides evidence for the “self-similarity” of

behavior across different scales, which indexes how the structure (or variability)

correlates with timescale. However, a system can also exhibit heterogeneous

structure (or variability) across different scales while still displaying a strong

correlation between degree of variability and analysis scales (Ihlen & Vereijken,

2010, 2013). Despite the emerging evidence for multifractal patterns in human

behavior (Harrison, Kelty-Stephen, Vaz, & Michaels, 2014; Ihlen, 2014;

Palatinus et al., 2014), less work has focused on the patterns of vocalizations that

might entail multifractal structure (Gonzalez, Ling, & Violaro, 2012; Hasselman,

2015). Future work should focus on new methods for estimating the multiscale

clustering of speech signals that exhibit nested structure and require a spectrum of

power law exponents for description.
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Furthermore, studying human interaction in terms of complexity matching

would benefit from advancements in the measures of the complexity of the

interacting systems, including multifractal formalisms (Ihlen & Vereijken, 2013).

Although the first wave of research studying complexity matching in human

interaction has demonstrated the phenomenon in various contexts using

monofractal methods (Abney, Paxton, et al., 2014; Marmelat & Delignières,

2012; Paxton et al., 2013; but see Coey et al., 2014, for the application of

recurrence quantification analysis), the complex coordination of human

interaction might require more refined measures that take into consideration

the heterogeneity of multiscale coordination.

Finally, the connections between complexity matching and strong

anticipation2 (Dubois, 2003; Stephen & Dixon, 2011; Stephen, Stepp, Dixon,

& Turvey, 2008; Stepp & Turvey, 2010) have already led to interesting questions

about the dependence on local or global coordination patterns (Fine, Likens,

Amazeen, & Amazeen, 2015; Marmelat & Delignières, 2012; Torre, Varlet, &

Marmelat, 2013). Future work should continue to focus on the question of local

versus global coordination dependencies in addition to the differences of

coordination patterns across modalities during an interaction.

CONCLUSION

The observation of multiscale clustering of speech production adds to the growing

list of human behaviors exhibiting complex multiscale patterns. We provided a

brief review of the current evidence of multiscale clustering of speech production

across a variety of ages and interactional contexts. Additionally, we discussed the

concept of complexity matching in human interaction and how this concept from

statistical mechanics can be used to investigate the convergence of multiscale

vocal productions across two people during an interaction. Human interaction is

a complex coordination of human behavior spanning multiple timescales and

modalities. This article described how one behavior—speech production—can

entail a multiscale structure and how such structures from two people can

converge during an interaction. We are optimistic that future researchers might

2The notion of strong anticipation originates from Dubois’ (2003) distinction between weak and

strong anticipation. In the context of an organism interacting with the environment, short-term

anticipation based on the organism’s internal model of the environment for prediction and local

attunement of behavior is referred to as weak anticipation. The general concept of strong anticipation,

in contrast, does not require an internal model. For strong anticipation, the coupling between organism

and environment relies on global attunement to statistical properties of the environment, like the

complex patterns exhibited by fractal scaling.
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apply the ideas demonstrated here for speech production to other behaviors and

coordination patterns during naturalistic interactions.
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APPENDIX

The multiscale clustering of vocalizations is estimated using Allan Factor (AF) analysis.
Each time series of acoustic onsets is segmented into M adjacent and nonoverlapping
windows of size T, then the number of events Nj is counted within each window indexed by
j ¼ 1 to M. The differences in counts between adjacent windows of a given size T is
computed as d(T) ¼ Njþ1(T) 2 Nj(T). The AF variance A(T) for a given timescale, T, is the
mean value of the squared differences, normalized by mean counts of events per window
(i.e., closely related to coefficient of variation),

AðTÞ ¼ dðTÞ2� �

2 NðTÞh i :

Poisson processes (i.e., random, independent events with exponentially distributed
interevent intervals) yield A(T) , 1 for all T. In contrast, power law clustering yields A
(T) . 1, specifically with A(T) , (T/T1)

a, where T1 is the smallest timescale considered
and a the exponent of the scaling relation (Thurner et al., 1997).
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Multiscale clustering is therefore indicated when A(T) , T a, where a . 0. This is a
power law with exponent a, which provides a metric for the degree to which events are
clustered across timescales. a corresponds to the slope of the plot in panel B of Figure A1,
which plots coefficient of variation versus timescale on a log-log plot. The further a is
from 0 and the closer it is to 1, the more structured we say the clustering of vocalizations is
across scales (see Figure A1).
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FIGURE A1 Schematic depiction of procedure of Allan Factor (AF) analysis. (A)

Vocalization events are counted within each timescale window. Each vertical line is an

acoustic onset. The black, grey, and white rectangles indicate long (,60min), medium

(,30min), and short (,7min) timescales, respectively. Notice at each of the three timescales,

there are clusters of onsets. (B) The estimates of multiscale clustering of vocalizations. AF

variance is derived from computing the squared difference of onset frequencies between

adjacent time windows for the three timescales. The slope of the log(AF) versus log(T) curve

estimates the scaling of AF variance across scales. The curve with dotted line indicates a slope

,0, which is evidence for a random (Poisson process) vocalization event series. The other

slope is closer to 1, indicating multiscale clustering.
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