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Abstract

Children learn language from the speech in their home envi-
ronment. Recent work shows that more infant-directed speech
(IDS) leads to stronger lexical development. But what makes
IDS a particularly useful learning signal? Here, we expand
on an attention-based account first proposed by Résédnen et
al. (2018): that prosodic modifications make IDS less pre-
dictable, and thus more interesting. First, we reproduce the
critical finding from Résédnen et al.: that lab-recorded IDS pitch
is less predictable compared to adult-directed speech (ADS).
Next, we show that this result generalizes to the home lan-
guage environment, finding that IDS in daylong recordings is
also less predictable than ADS but that this pattern is much
less robust than for IDS recorded in the lab. These results link
experimental work on attention and prosodic modifications of
IDS to real-world language-learning environments, highlight-
ing some challenges of scaling up analyses of IDS to larger
datasets that better capture children’s actual input.

Keywords: prosody; infant-directed speech; language acqui-
sition; computational reproducibility

Introduction

Children learn language by attending to the speech of those
around them. Observational studies show that children who
hear more language addressed to them show stronger lexical
development (Weisleder & Fernald, 2013), and experimental
work finds that infants preferentially attend to language-like
signals (Vouloumanos & Werker, 2007) and infant-directed
speech (IDS) in particular (Cooper & Aslin, 1990). However,
real-world auditory environments are complex, containing a
wide variety of sounds. How do infants figure out what parts
of the acoustic input are relevant, and what causes them to
attend to those signals preferentially?

One hypothesis is that speech directed to children has
prosodic properties that are particularly good at getting and
maintaining their attention (for a review, see Soderstrom,
2007). Descriptive work on IDS from targeted, lab-based
recordings finds that, compared to adult-directed speech
(ADS), IDS tends to be (a) higher in pitch, (b) more vari-
able prosodically, and (c) contain hyper-articulated vowels
and longer pauses (see Pretzer, Lopez, Walle, & Warlaumont
(2019) for a discussion of the prosodic characteristics of IDS
recorded in the home). IDS utterances also tend to be shorter,
less complex syntactically, and contain more repetition as
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compared to utterances in ADS. Moreover, recent computa-
tional modeling work by Résédnen, Kakouros, & Soderstrom
(2018) showed that IDS prosody is less predictable than ADS,
even after normalizing the two registers such that differences
in average pitch and pitch range were minimized.

Résdnen et al. (2018) propose that less predictable
prosodic sequences could grab attention because they violate
children’s expectations of what acoustic information is likely
to appear next. There has been much empirical and theoret-
ical work on the link between predictability of an event and
learners’ attention. For example, eye-tracking work shows
that when adults watch a movie, they tend to look at areas
of the screen that most violate their expectations, as opposed
to salient areas (e.g., high luminance) or random (e.g., tele-
vision fuzz) (Itti & Baldi, 2009). Moreover, experimental
work shows that 7-month-old infants attend more to stimuli
of intermediate uncertainty for both auditory and visual in-
puts as opposed to completely random or entirely predictable
sequences (Kidd, Piantadosi, & Aslin, 2012). And classic
models of stimulus-driven learning are built on the principle
that the probability of learning scales with the magnitude of
surprise of an event (Rescorla & Wagner, 1972).

A key idea of this prior work is that the predictability of an
event cannot be measured in isolation, and instead is linked
to an individual’s prior experiences and the immediately pre-
ceding context. Connecting these ideas to theories of early
language acquisition, IDS should be particularly engaging to
children when it deviates from the acoustics of the speech
they have previously heard, including speech not directed to-
wards them (ADS). Résidnen et al. (2018) demonstrated this
for lab-recorded adult speech, showing that the predictability
of IDS pitch trajectories to be lower than for ADS contours.

An important, open question for this predictability-based
account is whether IDS prosody is less predictable than that
of ADS in the home language environment. The present study
asks whether these lab-based results will generalize to the
IDS that infants hear over the course of a day in complex
and messy real-world learning environments.

©2020 The Author(s). This work is licensed under a Creative
Commons Attribution 4.0 International License (CC BY).
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Figure 1: Pitch processing pipeline. The left panels show the primary steps for converting the raw acoustic signal to temporal
sequences of pitch shapes that the neural network model will learn to predict. Each point in the top left panel represents a pitch
estimate extracted from the utterance using the soundgen R package. The curve in the middle left panel shows the normalized
pitch contour after interpolation via local polynomial regression. The bottom left panel shows the sequence of pitch shape
categories for each 100 millisecond time bin for this utterance. The right panel shows the pitch shape corresponding to each
category generated by k-means clustering on the polynomial coefficients in each time bin, for k = 12). Each curve represents
the predicted pitch shape generated by using the polynomial coefficients capturing the central tendency of each cluster.

Current Study

Before analyzing speech in the home environment, we at-
tempt to reproduce the key finding from Risédnen et al. (2018)
— that lab-recorded IDS is less predictable than ADS. That
is, we perform a computational reproducibility study by im-
plementing our pitch extraction and computational modeling
pipeline to provide evidence that our implementation is ca-
pable of estimating differences in prosodic predictability in
clean, lab recordings before asking questions about the more
complex home auditory environment.

Then we ask whether, and to what extent, these lab-based
results would generalize to the language that children experi-
ence in their day-to-day lives. This is an important question
because the lab recordings were focused on a particular com-
municative context where caregivers were given the explicit
goal to talk about concrete objects. Thus, it is possible that
the goal of directing children’s attention would lead to over-
estimation of the differences between IDS and ADS since
attentional control is the proposed functional role of pitch
modification. Also, the lab recordings contain little back-
ground noise, distractions, and other-directed conversations.
So while the lab-based results are interesting and have ad-
vantageous controls, we do not yet know the extent to which
children might hear surprising (i.e., attention-grabbing) pitch
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contours in their naturalistic input.

To estimate differences in lab-based and home IDS
vs. ADS, we leveraged two existing, open datasets. Follow-
ing Résédnen et al. (2018), we used the ManyBabies dataset,
which contains speech stimuli of North American English
created for a replication of chidren’s IDS preferences across
a large number of labs (The ManyBabies Consortium, 2017).
For the home recordings, we used the IDSLabel dataset
(Bergelson et al., 2019), which consists of subsets of utter-
ances from daylong audio recordings of children learning
North American English, most of which are openly avail-
able in HomeBank (VanDam et al., 2016). The IDSLabel
utterances were automatically identified by LENA software
as adult vocalizations taking place close in time to infant vo-
calizations. Then human annotators filtered out cases where
the audio did not appear to represent adult vocalization and
labeled the adult utterances as IDS vs. ADS.

We hypothesized that home-recorded IDS pitch would be
less predictable as compared to ADS, showing similar pat-
terns to the lab recordings. However, we thought that the
size of the IDS-ADS difference might be reduced since home
recordings capture a broader set of communicative contexts.



Measuring Prosodic Predictability

Pitch Estimation The behavioral data analyzed in this
study are time series of measurements of the estimated fun-
damental frequency (fy) of caregiver utterances (see Figure
1 for an overview). Throughout the paper, we use log(fy)
and refer to this measurement as pitch because psychophys-
ical tasks show that changes in log(fp) track with subjective
judgments of perceived pitch.

We first extracted pitch estimates for voiced regions of the
utterance using the soundgen R package (Anikin, 2019). We
then normalized the log-transformed pitch estimates such that
each speech register had a mean of zero and a standard devi-
ation of one. This allowed for a stronger test of IDS vs. ADS
predictability by controlling for IDS having higher average
pitch and often higher pitch variability. Finally, we inter-
polated across unvoiced regions of the utterances by fitting
a local polynomial regression, which generates a complex,
non-linear curve by fitting separate, simple models to sub-
sets of the data. We chose parameters for the loess such that
the interpolated curve would not vary wildly between voiced
regions of the utterance (a second degree polynomial with a
smoothing factor of 0.2). We also removed any unvoiced re-
gions so as not to interpolate beyond measured aspects of the
speech signal.

Temporal Segementation and Quantization We con-
verted the continuous pitch contours to a quantized form by
fitting a second degree polynomial to each 100-millisecond
segment of audio and extracting the linear and quadratic co-
efficients for each fit. One hundred milliseconds was the bin
width used in Risidnen et al. (2018), a choice based on keep-
ing a similar temporal resolution as syllable-based segmenta-
tion algorithms.

We then used k-means clustering to divide the two-
dimensional space of the polynomial coefficients into k cat-
egories of pitch shapes. This clustering step allowed us to
represent changes in pitch using a single number that mapped
to the centroid of each cluster, capturing the slope and degree
of curvature within each time bin. The choice of k controls
the number of different pitch shapes that can be represented,
with higher values allowing for more fine-grained and com-
plex shapes. Figure 1 shows an example of the range of pitch
shapes that can be represented using this approach (e.g., ris-
ing/falling and hills/valleys). To ensure that our results were
not sensitive to the choice of k, we selected a range of values
(6, 12, and 24) and averaged the results across each.

Quantifying Prosodic Predictability We modeled tem-
poral changes in pitch using deep neural networks (DNN)
with a specific architecture designed for learning sequences:
Long Short Term Memory Networks (LSTM) (Hochreiter &
Schmidhuber, 1997). At a high level of description, the model
can leverage prior context by using loops to pass information
from previous states of the model to the next state. Here,
we measure the accuracy of the LSTM in predicting the next
pitch shape when processing IDS vs. ADS.
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We trained and tested the LSTM using a variant of k-fold
cross-validation. For each fold, we sampled a different held-
out test dataset of 10% of the utterances, with the other 90%
being used for model training. To ensure the stability of our
findings, we ran the entire analysis pipeline five times and
averaged the results, and we trained the model across five dif-
ferent values for the proportion of IDS in the input: 0, 0.25,
0.5, 0.75, and 1. The value of 0.5 means that the durations
of IDS and ADS in the training data were equivalent to zero
being all ADS and one being all IDS.

We also directly compared the LSTM against a baseline
time series model. This baseline predicts that the world does
not change and that the next pitch shape will be the same as
the immediately preceding value (i.e., a persistence model).
This comparison allowed us to quantify the importance of
using a DNN that can learn more complex relationships be-
tween prior prosodic context and upcoming pitch trajectories.

We used the 1me4 package (Bates, Michler, Bolker, &
Walker, 2014) to fit mixed-effects regression models. The
mixed-effects approach allowed us to model the nested struc-
ture of our data — multiple utterances for each caregiver and
speech register — by including random intercepts for each
speaker, and a random slope for each speech register. We used
Bayesian estimation to quantify uncertainty in our point esti-
mates, which we communicate using a 95% Highest Density
Interval (HDI). The HDI provides a range of credible values
given the data and model. Since our key dependent measure
is the probability of a correct pitch prediction (a value bound
between [0, 1]), we used Beta regression. Our key prediction
is that the LSTM will make fewer correct predictions for IDS
compared to ADS. We interpret the model’s lower accuracy
as an index of surprisal, a feature known to attract attention
in behavioral experiments with infants (Kidd et al., 2012) and
adults (Itti & Baldi, 2009).

Participants and procedure

Lab recordings Following Résinen et al. (2018), we used
the ManyBabies dataset. Recordings were collected in a lab
observation setting during a 20-minute session. In each ses-
sion, caregivers were given a bag containing a set of familiar
(e.g., ball) and novel objects (e.g., a whisk) and were asked
to talk about each object, one at a time, either to their child
(IDS) or to the experimenter (ADS). The ManyBabies data
can be downloaded from: {https://osf.io/re95x/}.

The dataset contained only English recordings taken from
mothers in Canada (n = 11). We included all utterance types
(familiar, novel, and no label) but filtered utterances with
fewer than 10 valid pitch estimates after pitch extraction. Af-
ter this filtering, there were a total of 1074 utterances (677
IDS, 397 ADS). The average length of each utterance was
2.43 seconds for IDS and 4.92 seconds for ADS.

Home recordings We used the IDSLabel Home-
bank dataset (available to Homebank members at
https://homebank.talkbank.org/access/Password/
IDSLabel.html). This corpus contains data from the day-
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Figure 2: Pitch analyses. The left panel shows differences in log-transformed pitch between IDS and ADS for five summary
statistics in both the lab and home recording environments. Each point represents the average difference (IDS - ADS) for that
statistic. Larger difference scores indicate a higher value for IDS. The right panel shows changes in the average pitch for IDS
(blue) and ADS (red) as a function of position within utterances for both the lab (top) and home (bottom) recording contexts.
Error bars are 95% confidence intervals computed via non-parametric bootstrap.

long recordings of 61 participants, which was was created by
sampling from four larger corpora in the HomeBank database
(VanDam et al., 2016; homebank.talkbank.org). All data
were collected using the LENA audio recorder, which was
worn by children in specialized clothing and recorded a full
day of audio. Caregivers were given minimal instructions
about what tasks to do on the day of the recording.

Bergelson et al. (2019) used LENA’s utterance segmen-
tation and speaker diarization algorithms to identify audio
segments that were likely to be caregiver speech. Next,
trained, human annotators listened to each clip and coded
the speaker gender (male/female) and addressee (child/adult)
using primarily acoustic-phonetic information. Coders were
instructed to code whether the IDS register was being used
(i.e., whether it “sounds like” IDS) even if the addressee was
not a target child. After sampling, preprocessing, and human
annotation, the final dataset included 10822 utterances pro-
duced by adults (6624 IDS, 4198 ADS). If the clip appeared
to have been incorrectly labelled as adult speech, that was
also indicated by the annotators and those clips are excluded
from the present analyses. For more details about sampling
plan, preprocessing, and guidelines for human annotations,
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see Bergelson et al. (2019). The average length of an utter-
ance in seconds was 1.31 for IDS and 1.51 for ADS.

Results and Discussion

First, we present a set of standard pitch analyses, comparing
IDS to ADS in both the lab and home contexts using five
summary statistics: average, minimum, maximum, range,
and standard deviation. Then, we compare the output of the
computational models — the tendency to predict the correct
pitch shape — to ask whether IDS pitch is more predictable
than ADS in lab-based recordings and whether this differ-
ence generalizes to recordings made in the home environ-
ment. Specifically, we compare the LSTM to random guess-
ing and a naive time series model to quantify the value us-
ing more prior prosodic context to predict upcoming pitch
changes.

Standard Pitch Analyses To quantify differences
in pitch across contexts, we fit the following model:
log(pitchmetric) ~ speechregister * recording context +
(1 + speechregister|participantid). IDS had a higher
average, minimum, maximum, and standard deviation in
both the lab and home environments (Figure 2; all p < .001).
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Figure 3: Accuracy results for the naive baseline (persistence) and LSTM models. Each point represents the mean accuracy in
predicting the correct subsequent pitch shape. Color and shape represent the different modeling approaches. The two inset plots
show the difference in accuracy between IDS and ADS with higher values indicating more predictable pitch in ADS. Error bars
are 95% confidence intervals computed via nonparametric bootstrap.

Pitch range, however, was only reliably different in the lab
recordings and not in the home context. Moreover, the
average, min, max, and standard deviation was higher for the
lab recordings (all p < .001), which could be due at least in
part to the fact that the home recordings include both male
and female caregiver utterances whereas the lab recordings
included only female voices; other possible reasons could
have to do with differences in the content, function, and
context of the home-recorded utterances.

The right panel of Figure 2 shows the time course of pitch
across the utterances where each time bin represents 10% of
the utterance. IDS was higher in pitch at all points in the ut-
terance across both recording contexts. The lab recordings,
however, showed a different temporal pattern. Visual inspec-
tion suggests that pitch tended to increase towards the end of
the lab-recorded utterances especially for IDS (see positions
8 through 10 in Figure 3). In contrast, the pitch of both IDS
and ADS in the home tended to decrease over the course of
utterances. This difference in temporal patterns across the lab
and home provides some indication that the lab recordings
were capturing a specific communicative context.

Taken together, these results suggest that we were able to
successfully extract and estimate pitch in the more complex
and noisier home recording context — a useful result for fu-
ture work using automated pitch estimation with daylong au-
dio data — and that patterns of IDS vs. ADS differences in
basic pitch measures discovered in a controlled lab context
generalize to real-world input experienced by infants.
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Predictability of IDS vs. ADS We turn now to the ques-
tion of whether normalized pitch trajectories are less pre-
dictable for IDS than for ADS, controlling for differences
in mean pitch and pitch variability. To better understand
the value of using a neural network modeling framework
for measuring predictability, we compared the accuracy of
the LSTM’s predictions to a baseline time series model.
To quantify differences in predictability we fit a linear
mixed-effects regression predicting the accuracy pitch pre-
dictions as a function of speech register, context, and model
type: accuracy ~ speechregister x context x model + (1 +
speechregister|participant id).

Overall, the LSTM outperformed the persistence model (3
=-18.41, p = .001). Moreover, there was an interaction be-
tween model type and context such that the LSTM was criti-
cal for estimating predictability differences between IDS and
ADS in the home recordings (B;; = -5.12, p < .001). This
result means that considering more than just the prior 100 ms
improves the model’s ability to predict upcoming trajectories.

Next, we address our primary question of interest —
whether IDS would be less predictable than ADS, and
whether this effect would generalize to the home language en-
vironment. Pitch trajectories of both lab- and home-recorded
IDS were more challenging to predict than pitch trajectories
of lab-recorded ADS (B = -2.73, p = .006). In addition to the
qualitative difference, our quantitative results are similar to
those reported in Résédnen et al. (2018) for both speech reg-
isters. This finding indicates a successful replication of the
key result from Résénen et al. (2018) and provides evidence



that our implementation of the pitch estimation and model-
ing pipeline can detect differences in prosodic predictabil-
ity across speech registers. These results also confirm our
key hypothesis — that IDS in the home has prosodic con-
tours that are likely more surprising to infant learners, provid-
ing evidence for the functional role of prosodic modifications
present in real-world language input.

We also found an interaction between speech register and
context such that the extent of the IDS vs. ADS difference was
smaller in the home recordings (B;,y = -4.96, p = .001). This
interaction was driven by the ADS in the home recordings be-
ing harder to predict relative to those in the lab recordings (see
Figure 3). One plausible explanation for the reduced differ-
ence is that the home recordings capture a much wider range
of contexts, with a variety of communicative goals. For ex-
ample, we might not expect a large difference in predictability
if the caregiver’s goal was to soothe the child, a context that
was not captured in the lab recordings. In addition, we might
expect a large difference in predictability for emotionally-
charged ADS, which may be more likely to occur at home
than in the lab.

General Discussion

In this work, we successfully replicated the primary result
from Risinen et al. (2018): that IDS pitch trajectories were
less predictable than ADS trajectories. Moreover, we showed
that this result generalized to the home language environ-
ment, finding that the predictability difference held even after
normalizing the pitch trajectories to reduce differences in the
average and standard deviation of pitch. This result provides
support for attention-based accounts of the prosodic modifi-
cations of IDS — that caregivers’ modifications to their speech
lead to less predictability and consequently higher surprisal
of the auditory stimulus, a feature that has been demonstrated
to attract infants’ attention in lab experiments (Kidd et al.,
2012) and that forms the basis of models of learning in the
brain (Rescorla & Wagner, 1972).

Second, while we found that while IDS in children’s home
language environment is indeed less predictable compared to
ADS, the extent of the IDS vs. ADS predictability difference
was substantially smaller in children’s actual language input.
One possible explanation for this difference is that the day-
long home recording data contain a wide variety of contexts,
some of which might be expected to show differing effects
on pitch predictability. For example, in the home record-
ings, we might expect a good deal of IDS to be focused on
soothing a fussy infant. Those soothing-oriented IDS utter-
ances would likely show a very different pattern of pitch pre-
dictability (Fernald, 1989), perhaps even showing higher pre-
dictability, i.e., less surprisal, compared to the average ADS.
Similarly, some home-recorded ADS might be much higher
arousal than those recorded in the lab; we might expect ADS
produced during heated adult arguments, excited greetings, or
even excited statements about what an infant just did to have
less predictable pitch contours. Higher surprisal of adult pitch
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contours might help adults to obtain other adults’ attention.

A third significant difference is that the duration of the nat-
uralistic utterances, especially ADS, was much shorter than
in the lab recordings, and Résédnen et al. (2018) showed that
longer utterances were easier for an LSTM to predict. An-
other possibility could be that both background noise and
variability in speaker properties may be greater in the home
recordings. All of these factors could lead to lower pre-
dictability of home-recorded adult speech overall, and to
more sources of variability, thus reducing the effect size for
differences between IDS and ADS.

This work has several important limitations. First, both
datasets (lab and home) use recordings of English-speaking
caregivers in a Western cultural context. It would be inter-
esting to use these methods to ask whether IDS pitch is less
predictable in cultural contexts where prior research reports
lower amounts of child-directed speech from caregivers. Sec-
ond, our analysis only focused on a single prosodic variable
— pitch — and within-utterance predictability. There are likely
other components of speech, such as intensity or the timing
of utterances, that caregivers use to direct infant’s attention.
Third, we only measured the average predictability across the
utterance. It could be that IDS and ADS may behave dif-
ferently in terms of how predictability is distributed in time
with IDS being especially unpredictable at the start or end
of utterances. Finally, we trained the DNN on group-level
data and performed aggregated analysis. Future work could
explore training/analyzing model performance on individual
children’s language input to ask questions about individual
differences in children’s experiences of IDS vs. ADS.

This work relates lab-based studies on the effects of
prosodic modifications to children’s home language-learning
environments. The results suggest that IDS in naturalistic,
infant-centered daylong recordings is less predictable than
the ADS, but that this pattern is less robust than for lab-
based recordings of caregiver speech. Overall, we are opti-
mistic about the use of novel computational tools (e.g., neural
networks) to measure theoretically-relevant features of chil-
dren’s home language environment. And we hope that our
exploration here highlights some of the challenges and key
future directions for scaling up lab-based analyses to larger
datasets that better capture children’s actual language input.

Data/code available at
https://github.com/kemacdonald/lena-pred
Preregistration at
https://osf.i0/esv8z
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