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Evolution of reflexive signals using a
realistic vocal tract model

Anne S Warlaumont1 and Andrew M Olney2

Abstract
We introduce a model of the evolution of reflexive primate signals that incorporates a realistic vocal tract model for gen-
erating the signals. Signaler neural networks receive signal types as inputs and produce vocal tract muscle activations as
outputs. These muscle activations are input to a model of the primate vocal tract, generating real sounds. Receiver
neural networks receive spectrograms of these sounds as inputs and produce signal type classifications as outputs.
Incorporating a realistic vocal tract has a substantial effect on the types of signals that can evolve. Compared to a model
with abstract signals, the realistic model signals are more similar and have more correlated elements. The realistic,
embodied model also exhibits more variability in rate of adaptation, usually adapting more slowly. This may be explained
by the more jagged fitness landscapes in the realistic model. The realistic signals also tend to be quiet. Environmental
noise results in louder signals but makes the evolutionary process even slower and less robust. These results indicate
that signal evolution with a more realistic genotype–phenotype mapping can differ substantially from evolution with
abstract signals. Including realistic signal generation mechanisms may enable computational models to provide greater
insights into natural signal evolution.
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1 Introduction

1.1 Reflexive vocal signals in primates

Non-human primates produce a variety of vocal signals
that indicate an animal’s current state with regard to
emotion, arousal, social interaction, and so on. Some of
the functions served by these vocal calls include alarm,
protest, aggression, play, social contact, separation,
social bonding, and food preference (Arnold, Pohlner,
& Zuberbühler, 2008; Benz, 1993; Biben, Symmes, &
Masataka, 1986; Elowson, Tannenbaum, & Snowdon,
1991; Ploog, 1992; Seyfarth, Cheney, & Marler,
1980a,b; Talmage-Riggs, Winter, Ploog, & Mayer,
1972; Winter, Ploog, & Latta, 1966). The ability to
appropriately use these vocalizations is clearly related
to an animal’s fitness. For example, experimental deaf-
ening of squirrel monkeys can lead to at least a tempo-
rary increase in violent encounters with other monkeys
and can lead to a downgrade in the deafened monkey’s
status in the dominance hierarchy (Talmage-Riggs,
Winter, Ploog, & Mayer, 1972).

Similarities across different primate species’ vocal
systems have been observed (Masataka, 1983a;
Snowdon & Pola, 1978) and the acoustic distinctiveness
of call types has been argued to be demonstrated by the

high reliability across human listeners in coding the
vocalizations (Talmage-Riggs et al., 1972). Primate
vocalizations, apart from human speech, are predomi-
nantly phonation-based, that is, based on production
of sound at the larynx (Lieberman, 1968; Owren &
Goldstein, 2008; Owren & Rendall, 2001), though there
are some exceptions such as lip smacking (Ghazanfar,
Takahashi, Mathur, & Fitch, 2012). For example,
Goeldi’s monkeys produce two types of alarm calls,
with the frequency range being the primary acoustic
feature distinguishing the two types (Masataka, 1983a).
Similarly, fundamental frequency within a signal
appears to be a main distinguishing factor for how
Japanese macaques respond to alarm calls (Masataka,
1983b). Adult pygmy marmosets produce two types of
trills, used for different purposes, having similar funda-
mental frequency and apparently differing primarily in
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duration (Snowdon & Pola, 1978). Duration has also
been found to be an acoustic feature that can distin-
guish vervet monkeys’ snake alarm calls from eagle
alarm calls, with the repeating portions of the snake
alarm calls being on average longer than those of the
eagle calls (although differences in upper vocal tract fil-
tering appear to also play a role in distinguishing these
signals from each other) (Owren & Bernacki, 1988).
Besides duration, vervet alarm calls tend to differ in
pitch, temporal patterning of phonation, and whether
they contain ingressive portions (Seyfarth, Cheney, &
Marler, 1980a,b). Squirrel monkey calls also have been
described as varying in a variety of predominantly pho-
natory features, including amplitude, duration, funda-
mental frequency, fundamental frequency contour, and
temporal patterning of phonation (Winter, Ploog, &
Latta, 1966). Finally, in further support of the laryn-
geal basis of many non-human primate calls, it has
been found that a discriminant analysis based on
fundamental-frequency-related features can be used for
within-species discrimination of which food types have
elicited tamarins’ vocalizations (Benz, 1993). Thus, it
appears to be the case that across primate species, fun-
damental frequency, fundamental frequency contour,
duration, amplitude, and other phonation-related
acoustic variables form the primary basis for within-
species differentiation of vocalizations that serve differ-
ent functions.

The required laryngeal and respiratory motor pat-
terning is controlled by neural circuitry in the brain-
stem (Jürgens, 2002). Auditory feedback appears to
play only a minimal role; deafening of squirrel mon-
keys appears not to change the structure of their calls
or which calls are produced under which eliciting situa-
tions. Deafening does affect call amplitude as well as
the monkeys’ social interactions therefore affecting the
frequency of different call types (Talmage-Riggs et al.,
1972). The brainstem circuits responsible for the acous-
tic forms of the vocalizations appear to be largely
innate, depending very little on learning, at least com-
pared to human speech (Fischer & Hammerschmidt,
2010; Herzog & Hopf, 1984; Owren & Rendall, 2001;
Winter, Handley, Ploog, & Schott, 1973). For example,
it has been shown that infant vervet monkeys produce
vocal calls, including screams and ‘‘whrrs’’, that are
acoustically similar to their adult counterparts
(Seyfarth & Cheney, 1986), and human infants produce
cries from birth. These features make it reasonable to
call these vocal productions ‘‘vocal reflexes’’ (Talmage-
Riggs et al., 1972). (Note that there are other calls, such
as vervet grunts, that do show some significant acoustic
changes over the course of infant development, though
even the grunts produced at birth share a number of
acoustic features with adult grunts; Seyfarth & Cheney,
1986.) The minimal role of the forebrain in patterning
the vocalization and minimal reliance on learning sets
the motor control for reflexive signals apart from that

of human speech (Jürgens, 2002). Accordingly it is
likely that the neural networks responsible for these
reflexive calls are comparable to the reflex circuits and
central pattern generators in the vertebrate spinal cord
and brainstem, such as those involved in locomotion,
breathing, and feeding (Barlow, Lund, Estep, & Kolta,
2009; Bass & Remage-Healey, 2008; Delvolvé,
Branchereau, Dubuc, & Cabelguen, 1999; Grillner,
1982; Grillner & Wallen, 1985; Ijspeert, 2008; MacKay-
Lyons, 2002; Miller, 1972; Pearson, 1995; Wheatley,
Jovanović, Stein, & Lawson, 1994). As such, variations
in these vocal productions are likely due to evolution-
ary processes rather than individual or social learning.
On the perception side, responses to these signals
appear to be at least partly innate. Squirrel monkeys
reared in social isolation show appropriate responses to
alarm calls typically made in response to bird predators
as opposed to land predators and as opposed to a con-
trol, non-alarm sound (Herzog & Hopf, 1984). This
being said, on the perception side learning does appear
to play a more key role than it does in production
(Masataka, 1983b).

Reflexive vocal signals are of particular interest
because they represent the only, or at least the primary,
means of vocal communication in non-human primates
and appear to be preserved to some extent in humans,
in the form of cries, shrieks, and laughter (Bryant &
Aktipis, 2014; Jürgens, 1992; Lieberman, Harris, Wolff,
& Russell, 1971; Oller, 2000; Oller et al., 2013), which
are also innate, brainstem-based, and universal within
the species. Furthermore, there is evidence suggesting
that human speech, which relies heavily on neocortical
involvement, may build upon the limbic system and
brainstem circuitry responsible for producing reflexive
signals, and it has been proposed that these non-human
primate vocal signals are precursors to prosody in
human speech (Jürgens, 2002; Ploog, 1992; Schulz,
Varga, Jeffires, Ludlow, & Braun, 2005).

1.2 Previous models of the evolution of realistic
acoustic signals

A number of computational models have addressed the
evolution of signaling and receiving agents (Wagner,
Reggia, Uriagereka, & Wilkinson, 2003), showing how
signaling systems can evolve under a variety of condi-
tions. Much of this work has modeled the signalers and
receivers as neural networks with connection weights
being genetically encoded. Most of the time the models
are designed so that signals are arbitrary vectors (e.g.
Cangelosi & Parisi, 1998; Krakauer & Johnstone, 1995;
Levin, 1995; MacLennan & Burghardt, 1994; Nowak &
Krakauer, 1999; Smith, 2002; Wagner et al., 2003;
Werner & Dyer, 1992) rather than realistic signals such
as gestures or vocalizations. Similarly, receiving agents
are rarely required to process realistic signals.
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There are a handful of exceptions that do make
progress toward using more realistic signals. One exam-
ple is a model by Di Paolo (2000) that used a genetic
algorithm to evolve an acoustic communication system
between two agents who moved about in a two-
dimensional space and whose fitness depended on the
ability to maintain proximity to each other. Each
agent’s genome encoded parameters such as individual
connection weights, neuronal biases, and decay rates in
a neural network that generated and perceived simple
acoustic signals. The signals took the form of a single
frequency that varied continuously in amplitude over
time. Across space, the signal amplitude dropped off
with the squared distance from the sound source. The
sound amplitude also attenuated when it passed
through an agent’s body. These two physical properties
created a shadowing effect. The use of acoustic signals
had consequences for the types of strategies that the
agents evolved, such as turn-taking patterns, which pre-
sumably were adaptive because they reduced interfer-
ence between the two agents’ signals, and signals that
tended to correlate with the agents’ angular move-
ments, which was possible because of the shadowing
properties of sound in the embodied simulation. By
taking into account the physical properties of sound, in
particular its change in amplitude as a function of dis-
tance and interference from a physical body, the work
demonstrated how the physical embodiment of a signal
can strongly affect the features of a communication sys-
tem. This evidence that qualitatively different results
can be obtained when the physical embodiment of a
signal is incorporated into a model helps motivate the
approach taken here, which focuses on how physical
generation of acoustic signals by a primate vocal tract
can affect the evolution of a communication system.
In a neural network model by Bocchi, Lapi, and
Ballerini (2010), signalers’ upper vocal tract (i.e. the
portions of the vocal tract located above the larynx)
configurations for each of five vowel signals were
genetically encoded. Each signaler was paired with a
receiver who learned, via a supervised neural network,
to identify the signaler’s vowels. In other words, signal
production was purely genetically encoded and signal
perception was learned from scratch at each generation.
The model successfully evolved accurate communica-
tion, even in the face of noise at the production or at
the signal level. The work thus demonstrates the feasi-
bility of evolving a control system for a realistic vocal
tract model. However, its focus is on speech signals,
specifically vowel sounds, and given this goal, its
genetic encoding of signal production is unrealistic
since the mapping from linguistic meaning to vocal
tract configurations in human speech appears to be
learned, rather than genetically fixed (De Saussure,
1983; Hockett, 1960; Oller, 2000; see Chater, Reali, &
Christiansen, 2009, for a related computational argu-
ment regarding the evolution of language generally).

Our goal here is to model the evolution of reflexive sig-
nals, a biologically simpler and evolutionarily broader
class of vocal signals that includes most if not all non-
human primate vocalizations as well as human screams,
cries, and laughs. Given this goal, the focus should be
on phonation-based patterns, modeling patterns of
sound production at the larynx rather than patterns of
filtering of a periodic sound source by the upper vocal
tract (the latter is appropriate for modeling differences
among vowel types in a speech system but not for dif-
ferentiating among reflexive human and non-human
primate vocalizations).

Incorporation of a realistic vocal tract model for
sound production is much more common in work
focused on speech sound learning and the cultural evo-
lution of speech sound systems (De Boer, 2000, 2001;
Heintz, Beckman, Fosler-Lussier, & Ménard, 2009;
Howard & Messum, 2011; Kanda, Ogata, Komatani,
& Okuno, 2008; Kröger, Kannampuzha, & Kaufmann,
2014; Kröger, Kannampuzha, & Neuschaefer-Rube,
2009; Miura, Yoshikawa, & Asada, 2012; Moulin-
Frier, Nguyen, & Oudeyer, 2014; Nam, Goldstein,
Giulivi, Levitt, & Whalen, 2013; Oudeyer, 2005, 2006;
Warlaumont, 2013; Warlaumont, Westermann, Buder,
& Oller, 2013; Westermann & Miranda, 2004;
Yoshikawa, Asada, Hosoda, & Koga, 2003). One ques-
tion of interest has been whether the ‘‘articulatory/ener-
getic cost for vocalizations’’ (Oudeyer, 2005) and the
perceptual distinctiveness of various sounds to the
human auditory system will affect vocal learning and
the cultural evolution of speech sound systems. For
example, a study by Oudeyer (2005) focused on the
emergence of a syllable inventory among a group of
agents via inter-generational learning. More-difficult-
to-generate sounds were harder for the agents to
remember. Difficulty was a function of how much the
vocal tract articulators had to move away from a fixed
frame of neutral jaw oscillation (MacNeilage, 1998).
Oudeyer’s model also took into account the particular
features of how sound is processed by the human audi-
tory system, so that there was pressure to converge on
perceptually distinguishable sounds. In other words,
both perceptual and motor features of the human body
affected the speech sound systems upon which the
agents ultimately converged. After a period of cultural
evolution, the model had syllable inventories with
properties similar to those observed in human lan-
guages. Relatedly, work by Nam, Goldstein, Giulivi,
Levitt, and Whalen (2013) demonstrated, using a realis-
tic upper vocal tract model, that the relative frequencies
of various consonant–vowel combinations in infant
babbling and adult speech may be due primarily to the
physiological requirements of the consonant and vowel
gestures: consonants and vowels that involve similar
vocal tract configurations are more likely to co-occur.
These studies thus support the idea that the physiology
of the vocal tract, and the particularities of the
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articulatory-acoustic mapping, matter to the emergence
of vocal signals. However, they focus on cultural
speech sound evolution, which is likely to have relied
much more on learning processes than the evolution of
reflexive signals (at least as far as production is con-
cerned) and also involves upper vocal tract (e.g. lip and
tongue) movements to a greater extent than reflexive
vocal signals, which rely primarily on control of the
larynx.

With regard to modeling reflexive signal perception,
work by Ryan, Phelps, and Rand (2001) has incorpo-
rated a high degree of realism. They focused on the evo-
lution of perception by female túngara frogs of male
frogs’ mating signals. They evolved the connection
weights of a simple recurrent neural network using a
genetic algorithm where fitness depended on the ability
to accurately detect which calls came from members of
the same species and which belonged to other species.
The inputs to the neural networks were spectrograms
of realistic synthetic frog calls which were synthesized
by manipulating seven acoustic parameters. These
synthesized signals had previously been shown to elicit
appropriate responses from real female frogs. The com-
putational model accounted well for patterns observed
in real frogs’ responses to synthesized vocalizations and
supported the idea that the evolutionary history of
being selected based on ability to perceive ancestors’
mating calls had effects on the way the species currently
classifies signals. Thus, the use of realistic vocal signals
in the model enabled more direct comparison with real
animals’ behaviors and led to novel insights into real
animals’ communication systems. Note, however, that
the focus was exclusively on signal perception; evolu-
tion of the males’ call productions was not addressed.
Our approach aims to extend this work by focusing not
only on the perception of realistic vocal signals but also
on their production.

1.3 Overview of the present study

It is important to move toward development of models
of reflexive signal evolution that incorporate realistic
signaling channels. The speed and form of evolution of
signalers and perceivers is likely to be affected by con-
straints imposed both by the individuals’ physiology
and by physical (e.g. acoustic) factors (Chiel & Beer,
1997). For example, physiological and physical con-
straints may make evolution of signaling more or less
robust, or may affect the number of signals that can
evolve. As was observed for Ryan et al.’s túngara frog
model, we can expect that incorporating more realism
will eventually lead to an improved ability to relate
models of reflexive signals to real animal signals. We
also expect that such work will eventually benefit the
development of robots that communicate vocally
(Parisi, 1997; Wagner et al., 2003). Creating a more rea-
listic model of the evolution of neural control of

reflexive vocalizations by the vocal tract will also pave
the way for models of vocal learning to take into
account the existing neural circuitry that is phylogeneti-
cally older than the circuitry used for speech-related
vocal learning.

In this paper we present a study comparing the
genetic evolution of communicative signals when the
signals are made with a simulated primate vocal tract
compared to when they are purely abstract vectors. The
long-term goal is to move toward a computational
model of how reflexive vocal signals might have evolved
in the primate lineage. As far as we know this is the first
computational model of reflexive vocal signal evolution
to include a realistic mammalian vocal tract, focusing
on phonatory components. It is also unique in that it
explicitly compares how evolution progresses in simula-
tions where signals are made realistic in this way versus
where signals are abstract vectors.

Since the focus of this initial study is to introduce a
realistic vocal sound generation apparatus into the mod-
eling process, we simplify many other aspects of commu-
nication evolution. For example, we separate producers
and receivers into distinct populations, and we assume
that fitness is based on communication success, rather
than letting the value of communication emerge from
more natural interactions between agents and their
environments, as these have already been the focus of a
number of previous computational models (e.g. Di
Paolo, 2000; Marocco & Nolfi, 2007; Quinn, Smith,
Mayley, & Husbands, 2003; Werner & Dyer, 1992).

The simulation and analysis code are available at
https://github.com/AnneSWarlaumont/NNVocEvo.

2 Methods

This study compares two types of models. In one of the
models, signals are purely abstract vectors. We will call
this the abstract model. In the other type of model, sig-
nals are created by simulation of the human vocal tract,
so the sounds are more realistic with respect to how pri-
mate vocal signals are produced and perceived. We will
call this the realistic model. The vocalization synthesis
introduces a nonlinear transformation between signaler
output and receiver input. These differences are high-
lighted in Figure 1.

Twenty repetitions of each model were run for 500
generations for a total of 40 simulations. The popula-
tion size of each simulation was held constant at 100
signalers and 100 receivers. Each signaler is a three-
layer feedforward neural network that takes one of
three intended functions as input and produces a series
of activations as output. In the abstract model, these
output activations serve as the signal. In the realistic
model, the output activations are interpreted as laryn-
geal muscle values that determine the behavior of the
vocal tract simulator. The vocal tract simulation
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translates the muscle activations into acoustic output.
Abstract model receivers take the signalers’ output acti-
vations directly as input. Realistic model receivers on
the other hand take spectral information about the
synthesized vocalization sounds as input. Receivers
transform their input into guesses about which of the
three possible functions was the signaler’s intended
function. A genetic algorithm evolves the signaler and
receiver neural network connection weights. Fitness is

based on accuracy of matching between the producers’
inputs and the receivers’ most active outputs. Each of
these components is described in more detail in the fol-
lowing subsections.

2.1 Generation of realistic and abstract signals

For the realistic model, we used the articulatory synthe-
sizer described in detail in Boersma (1998) and
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V
ocalis

Thyroarytenoid

Posterior cricoarytenoid

Lateral cricoarytenoid

Signaler Signaler

Receiver
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Input (intended function) Input (intended function)

Hidden layer Hidden layer

Output (abstract signal) Output (muscle activations)

Input (abstract signal)

Hidden layer

Output (interpreted function)

Input (signal acoustics)

Hidden layer

Output (interpreted function)

Sound synthesis via 
vocal tract physics 

simulation

Abstract Model Realistic Model

Figure 1. The left side shows how communication between a signaler and receiver takes place in the abstract model. One of the
signaler’s intended function nodes is activated. That activity propagates through weighted connections to a hidden neuron layer and
then to an output layer. The output layer activations constitute the abstract signal. These activations are directly given to the
receiver as input node activations. The receiver’s input activity propagates through weighted connections to the hidden layer and
then through weighted connections to the output layer. The most active of the receiver’s output nodes is the signal function as
interpreted by the receiver. If this matches the signaler’s intended function, it is considered a successful signaling episode. The right
side of the figure shows how communication between a signaler and receiver takes place in the realistic model. Instead of signaler
outputs making up the signal itself, signaler outputs determine the activation levels for the six laryngeal muscles of the articulatory
synthesizer. Vocal tract simulation is used to generate a synthesized vocalization. That synthesized vocalization is converted into a
spectrographic representation, which is what is given as input to the receiver. The schematic illustration of the vocal tract model is
copied with permission from Figure 2.1 of Boersma (1998). The original caption for that part of the figure is: ‘‘Simplified mid-sagittal
view of our model of the speech apparatus (not drawn to scale). The model features a sequence of 89 straight tubes with walls
consisting of masses and springs. The leftmost of these tubes is closed at the diaphragm, the rightmost tubes form the openings
between the lips (and between the nostrils, which are not shown) and are open to the atmosphere, where fluctuations in the airflow
are radiated as sound. The glottis is represented by two tubes (shown as one here), which are treated exactly the same way as all
other tubes. The speech muscles can alter the rest positions and the tensions of the springs. Some of the masses are connected with
springs to their nearest neighbors. Not shown are: the coupling springs that connect masses to their neighbors; the springs and
masses in the z-direction (perpendicular to the paper); the nasal tract.’’
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available in Praat (Boersma & Weenink, 2010)
(Figure 1). The synthesizer is intended to be a biologi-
cally realistic model of the human vocal tract and treats
it as an air-filled tube bounded by walls of damped
mass–spring systems. Muscle activation levels affect the
parameters of the vocal tract walls, including resting
positions, lengths, spring constants and damping con-
stants. The pressure and airflow within the tube is cal-
culated based on fluid dynamics conservation laws.
The time-varying air pressure at the mouth is recorded
as the sound output of the simulator and is saved as a
.wav file. We chose this particular synthesizer because
it includes a detailed representation of the larynx based
on an established laryngeal model (Ishizaka &
Flanagan, 1972), and it was readily and freely available
(although there are a number of other articulatory
synthesizers, many focus primarily on the upper vocal
tract, i.e. the sections above the larynx, without realisti-
cally representing the laryngeal region). Note that while
much of the laryngeal model is based on features of
Ishizaka and Flanagan’s model, there are a number of
additional complexities (see Section 2.7 of Boersma,
1998, for a detailed description).

Each vocal tract simulation and hence each realistic
model signal lasted 0.5 s. The Lungs parameter, which
controls the volume of air in the lungs, was set to 1 at
time 0 s and decreased linearly to 0 at time 0.5 s.
Depending on the state of the laryngeal muscles, which
have nonlinear effects on vocal fold vibration, these
lung settings will in some cases produce voiced sound
and in other cases produce no sound at all or only a
whisper-like breathiness. Laryngeal muscle activations
were held constant throughout the 0.5 s time period.
The following six laryngeal muscle activations were set
to the levels specified by the signaler network’s output
neuron activations: interarytenoid, cricothyroid, voca-
lis, thyroarytenoid, posterior cricoarytenoid, and lateral
cricoarytenoid. These are all the laryngeal muscles
included in the synthesizer. Activation of these muscles
modifies the equilibrium positions and the tensions of
the walls of the laryngeal portion of the vocal tract tube
(Boersma, 1998). For simplicity in this initial study,
non-laryngeal muscles, such as those affecting the ton-
gue, lips, and jaw, were not activated. Our focus on lar-
yngeal muscles was motivated by the fact that the
reflexive primate vocal signals that are the focus of this
study are primarily phonation-based, meaning that the
signals’ characteristic acoustics are rooted in the way
sound is produced at the larynx (Lieberman, 1968;
Owren & Goldstein, 2008).

After running the vocalization synthesizer, the result-
ing sound waveform was transformed into a mel-scale
power spectrogram with two time bins and three fre-
quency bins ranging from 20 to 2000 Hz and centered
at 433, 846.1, and 1306.3 Hz, using Ellis’s toolbox for
MATLAB (Ellis, 2007). Although humans can hear up
to about 20,000 Hz, since we wanted to use only a small

number of elements to describe the spectrogram, we
opted to focus on the lower frequency portions of the
signal, which carry the most power in human vocaliza-
tion. The spectrogram was then normalized by dividing
each pixel’s power by 5 3 1011, which, based on pilot
explorations, scaled the values down to a range that
was roughly between 0 and 1.

For simulations that used abstract, non-embodied
signals, the signaler network’s six outputs were made to
range from 0 to 1 by adding 1 to each value then divid-
ing by 2. The resulting set of values served as the signal
itself.

2.2 Signaler neural network

Each individual signaler was a three-layer feedforward
neural network. There were three input nodes, equal to
the number of signal functions. Signal functions can
also be thought of as meanings, though we avoid the
use of the term ‘‘meaning’’ in this paper as we do not
wish to imply that reflexive primate vocal signals are
referential (Oller & Griebel, 2014). Signal functions
were represented in a localist manner with [1 0 0], [0 1
0], and [0 0 1] representing the first, second, and third
signal functions respectively.

The input nodes were connected to a three-node hid-
den layer, which was in turn connected to a six-node
output layer. Input node activations were multiplied by
their connection weights to the hidden layer nodes,
summed, and input to a hyperbolic tangent transfer
function to obtain the hidden node activations. Hidden
node activations were then multiplied by their weights
to the output layer. Output nodes had a linear transfer
function with a slope of 1 and an intercept of 0 that
saturated at values of 21 and 1 (i.e. each output node’s
weighted inputs were added together and the output
was set to be the value of this sum except that if the
sum was less than 21 the output was set to 21 and if
the sum was greater than 1 the output was set to 1).

Neural network connection weights were determined
by the individual’s genes (see Section 2.5 below) and did
not change over the lifespan of an individual.

2.3 Receiver neural network

Each receiver also consisted of a three-layer feedfor-
ward neural network. There were six input nodes, equal
to the number of elements in a signal. These input
nodes were connected to three hidden nodes, which
were connected to three output nodes, one for each sig-
nal function. Hidden layer nodes had a hyperbolic tan-
gent transfer function. Output nodes had a linear
transfer function with a slope of 1 and an intercept of 0
that saturated at values of 0 and 1. The first neuron of
the output layer represents the receiver’s vote for the
first function, the second its vote for the second func-
tion, and the third its vote for the third function. We
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took the function associated with the maximally acti-
vated output neuron to be the receiver’s judgment
about the signal’s function. If there was a tie for maxi-
mum between any of the meanings, the first meaning
was arbitrarily judged the winner. As with the signaler
networks, each receiver network’s connection weights
were set according to the individual’s genes and did not
change over the individual’s lifespan.

2.4 Fitness function

Each signaler’s neural network (and vocal tract simula-
tor, where applicable) was run three times, once for
each input signal. Each receiver network was then run
with each of the 100 signalers’ output signals as an
input. In other words, each receiver experienced 300
inputs.

For each pair of signaler, s, and receiver, r, a com-
municative success score, Csr, was obtained:

Csr =
X3

n= 1

1 if argmax
m

is, n,m = argmax
m

or, n,m

0 otherwise

(
ð1Þ

where n is a particular signal, is,n,m is the input at func-
tion node m for signal n to the signaler and or,n,m is the
output from the receiver at function node m for that
same signal. Csr is thus a measure of how correctly the
receiver’s classifications matched the original inputs
that were given to the producer.

Using these communicative success scores, each sig-
naler’s fitness was proportional to

F(s)=

P
r Csr

100
+ 0:01 ð2Þ

which is the mean communicative success for signaler s
over all receivers plus a small amount to ensure at least
a small chance of each individual reproducing. Each
receiver’s fitness was proportional to

F(r)=

P
s Csr

100
+ 0:01 ð3Þ

the mean communicative success for receiver r over all
signalers, plus a small amount to ensure every individ-
ual a small chance of reproducing.

While some have argued against the assumption that
cooperative success in communication of information is
the driving evolutionary force behind the evolution of
primate vocal signals (Noble, de Ruiter, & Arnold,
2010; Owren & Rendall, 2001), it does appear to be the
case that even for competing individuals, at least in
some circumstances successful communication of infor-
mation about one animal’s state to the other is benefi-
cial for both animals (Oller & Griebel, 2014; Talmage-
Riggs et al., 1972). The focus of the present study is the
impact of vocal tract embodiment on the evolution of
signal form, rather than on the evolution of

communication in general, which has been addressed
by previous models. Therefore, we assume some
mechanism whereby successful communication leads to
increased fitness for both producer and receiver, while
acknowledging that the real-life circumstances under
which successful communication is beneficial to signa-
ler, receiver, or both, are considerably more complex.

An individual’s fitness determined its likelihood of
mating and reproducing, as described in the following
section.

2.5 Genetic algorithm

Each evolutionary simulation incorporated a genetic
algorithm (Mitchell, 1998) with genes specifying the sig-
nalers’ and receivers’ neural network connection
weights. This is similar to a number of previous models
of signal evolution (Di Paolo, 2000; Levin, 1995;
Marocco & Nolfi, 2007; Nolfi, 2005; Quinn et al., 2003;
Smith, 2002; Wagner et al., 2003; Werner & Dyer,
1992). At the start of each simulation, each gene (i.e.
each neural connection weight) was assigned a random
value between 21 and 1. There were two populations
of individuals, one of signalers and one of receivers,
and each population had 100 individuals per genera-
tion. Each evolutionary simulation was run for 500
generations. Mating was done separately for the signa-
ler and receiver populations and likelihood of mating
was proportional to each individual’s mean communi-
cative success.

The population size remained the same throughout,
and at each generation the current set of signalers was
completely replaced by 100 new offspring. The parents
of these offspring were chosen randomly such that an
individual signaler’s relative likelihood of reproducing
was proportional to F(s). Sampling was done with
replacement, so the same individual could produce
multiple children. When copying a parent’s genes to its
child, each gene was mutated with probability .05.
Given the size of the networks, this means that on aver-
age about one weight per individual was likely to be
mutated when the individual reproduced. If a gene was
chosen to be mutated, a random value between 25/7
and 5/7 was added to that gene’s value. The mutation
rate and range were chosen somewhat arbitrarily, based
on pilot explorations. There was no crossover. The
same procedure, except using F(r) instead of F(s), was
used for obtaining receiver offspring.

3 Results

3.1 Communicative success of the populations

In both versions, the communicative success of the
model increased as a function of generation (Figures 2
and 3). A communicative success of 3 corresponds to
success on all three signals, a communicative success of
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2 corresponds to success on two out of three signals,
and so on. For all of the abstract-signal simulations, by
about 100 generations median communicative success
for both signalers and receivers was about 2.5 or
greater. For the realistic-signal (embodied) simulations,

some of the simulations rose quickly to that same level
of performance, while others lagged behind the
abstract-signal simulations, taking longer to rise to
median communicative success of 2.5. Note that in
simulations in which there is no selection, that is, in
which agents reproduce at random, no successful sig-
naling system evolves, since there is no selection pres-
sure for the receivers’ and the producers’ genomes to be
coordinated.

We ran a linear mixed effects model over the median
communicative success for generations 50 to 100 with
simulation as a random effect and model type, genera-
tion, and interaction between model type and genera-
tion as fixed effects. Communicative success and
generation were standardized prior to running the anal-
yses. The generations were restricted to the 50–100
range in order to focus on the time point of maximal
growth in communicative success, which was where dif-
ferences across the two versions emerged, and in order
to focus on a region of the data where trends were rela-
tively linear and residuals approximately normally dis-
tributed. There was a statistically significant effect of
generation, with communicative success increasing as
generation increased, with b = 2.72 and p \.001 for
the producers and b = 2.74 and p \.001 for the recei-
vers. There was also a statistically significant effect of
model version, such that overall communicative success
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Figure 2. Communicative success as a function of generation. The top left panel shows each abstract simulation’s median signaler
communicative success. The bottom left panel shows each abstract simulation’s median receiver communicative success. The right
two panels show the signaler and receiver communicative success scores for the realistic model.
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Figure 3. Average median communicative success across the
20 simulations of each model version. The top plot shows the
average median communicative success for the producers and
the bottom shows the same for the receivers.

190 Adaptive Behavior 23(4)



during this time period was lower for the realistic simu-
lations, b = 20.82 and p =.002 for the producers and
b = 20.93 and p\.001 for the receivers. Additionally,
there was a statistically significant interaction term for
both the median producer communicative success,
b = 20.43, p =.001, and the median receiver commu-
nicative success, b = 20.53, p \.001, such that the
realistic simulations’ communicative success tended to
increase more slowly than the abstract simulations’.
Section 3.7 discusses the idea that the nonlinear trans-
formation from producer output to perceiver input due
to the vocal apparatus alters the fitness function, creat-
ing more local minima and making for this more varied
and on average slower convergence.

The variability across simulations can be seen in
Figure 4, which shows the standard deviation of the
median communicative success across simulations for
the producers and the perceivers in the realistic and
abstract models. Both models have a peak in variability
across simulations early on, when the greatest adapta-
tion is taking place, and this variability tapers off as the
communicative success gradually reaches its maximum
value. It can also be seen that the realistic model has
greater variability across simulations for both producer
and perceiver communicative success during the period
from around generation 75 to around generation 250.
An F test comparing the variances of the two model
versions’ producer communicative success values at
generation 100 supports this observation that variabil-
ity is greater for the realistic version, F (19, 19) = 0.27
and p = .007 for the producers and F (19, 19) = 0.34
and p = .02 for the receivers.

In summary, it appears that robust signaling and
receiving evolved at a more consistent, relatively fast
rate in the abstract signal version than in the realistic
signal version, in which communication sometimes
evolved quickly and sometimes quite a bit more slowly.

3.2 The evolved signals

3.2.1 Comparison between realistic and abstract model
signals. Figure 5 shows examples of the signaler outputs
and the receiver inputs after 500 generations for the
abstract model. The examples are from the first six of
the abstract model simulations and are from the 50th
most fit producer (i.e. the median producer) within
each simulation. Note that for the abstract-signal
model, signaler outputs and receiver inputs are the
same by design.

Figure 6 shows realistic model signaler outputs,
which correspond to muscle activations, and receiver
inputs, which correspond to the spectrograms of the
sound wave resulting from those vocal tract muscle
activations. Recall that these spectrograms were low-
resolution mel-scaled spectrograms of actual synthe-
sized sounds. The sounds themselves are shown in
raw and in higher-resolution spectrogram forms in
Figure 7. The audio files corresponding to each of
the sounds in Figure 6 can be downloaded from
http://dx.doi.org/10.6084/m9.figshare.1195957.

When abstract signals were used, the evolved signal
vectors ended up having element values that were often
either all minimal (0) or maximal (1). Which vector ele-
ments were minimal or maximal for a given signal
appeared to be arbitrary although within a simulation
the vectors representing the three different signals were
always rather different, as one would expect.

In the embodied, realistic-signal version of the
model, the evolved muscle activations associated with
each signal tended to have rather extreme values, as
was the case in the abstract-signal version. We will dis-
cuss some possible reasons for this in the following sec-
tion. The acoustics of the vocalizations resulting from
these muscle activations, on the other hand, reveal that
the signals that had to be categorized by the perceivers
were quite different from those in the abstract-signal
version (see the bottom panels of Figures 5 and 6).
Most signals were very quiet and quite similar to one
another, although a few of the evolved signals were lou-
der (e.g. signal 3 in simulation 2 and signal 1 in simula-
tion 6). Additionally, there was interdependence among
elements of the signal vectors, such that when a pixel of
the vocalization spectrogram was darker, nearby pixels
also tended to be darker. Thus, compared to the
abstract signals, there were striking differences in the
signals created by transforming muscle activations to
acoustic spectrograms via the vocal tract model, and
this had effects on the types of signals on which the
populations converged.
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Figure 4. Standard deviation of the median communicative
success across the 20 simulations, which indicates variability
across different evolutionary trajectories. The top plot shows
the variability in the average producer communicative success
across different simulations and the bottom shows the variability
in the average receiver communicative success across different
simulations.
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One way to relate the differences in the types of sig-
nals used by the realistic model to the differences
observed in their performance (see Section 3.1) is to
calculate the within- and between-meaning distances
between signals produced by the population at the end
of the simulation (i.e. at generation 500). The average
pairwise distance within a simulation between the sig-
nals (i.e. the vectors that were input to the receivers)
that were produced in response to different meanings
was 1.77 for the abstract simulations and 0.14 for the
realistic simulations. This difference was statistically
significant, t(22.59) = 26.39, p \.001. The average
pairwise distance between signals within a meaning
category was 0.55 for the abstract simulations and 0.05
for the realistic simulations, which also was statistically
significant, t(23.69) = 13.11, p \.001. We also com-
pared the average ratio of within-simulation average
within-meaning distance to within-simulation average
between-meaning distance. A smaller ratio is an indica-
tion that signals corresponding to different meanings
are easier to distinguish from each other within that
simulation. This ratio was 0.32 for the abstract simula-
tions and 0.68 for the realistic simulations, a difference
that was also statistically significant, t(21.87) = 24.41,
p \.001. The higher within- to between-meaning dis-
tance ratio and lower across-signal differences in gen-
eral may be a reason for the extra challenge faced by
the realistic version, reflected in the realistic model’s

slower-on-average growth in communicative success
over the course of the evolutionary simulations.

We also ran a cluster analysis on all the signals (i.e.
the receiver inputs) produced within a simulation at
generation 500. We used the mclust function from the
mclust R package (Fraley, Raftery, Murphy, &
Scrucca, 2012) and compared the number of clusters it
estimated within a simulation for the realistic model to
the number of clusters estimated for the abstract
model. Mclust treats the data as a Gaussian mixture
model and uses the Bayesian information criterion
(BIC) to optimize the number of clusters. The maxi-
mum number of clusters was set to the default of 20.
On average, 9.3 clusters were identified among the rea-
listic model signals and on average 14.35 clusters were
identified among the abstract model signals. This dif-
ference was statistically significant, t(35.49) = 2.21,
p = .03. The smaller number of clusters found for the
realistic model are another indication that there is
reduced variation within a simulation in the types of
signals that are produced when a realistic sound pro-
duction mechanism is used.

3.3 Signals and genes before versus after evolution

Figures 8 and 9 show examples of the producer outputs
and receiver inputs at generation 1, prior to any evolu-
tionary adaptation taking place, when neural
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Figure 5. Examples of abstract model signals at generation 500. Top: the outputs produced by the median fitness producer in
response to the three intended function inputs for the first six simulations of the abstract version (to save space, the other 14
simulations are not shown). Functions are in rows and simulations are in columns. Bottom: the signals, that is, the inputs given to the
receivers, corresponding to each of the producer outputs shown above. Note that since these are from the abstract version of the
model, the top and the bottom portions of this figure are exactly the same (compare to Figure 6). Although each signal is depicted
as a three-row, two-column matrix, as far as the model was concerned the signals’ six vector elements did not have any spatial
organization. Darker pixels indicate higher values.
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connection weights were random. The producer out-
puts tended to have less extreme values at generation 1
compared to generation 500 (Figures 5 and 6). Since
the abstract model’s receiver inputs were the same as its
producer outputs, the tendency toward extreme values
as evolution progressed also applied to the receiver
inputs in that version.

The realistic model signals that were input to the
receivers showed a different and interesting pattern.
Prior to any adaptation taking place, the realistic model
signals were fairly evenly split between high-amplitude,
low-amplitude, and silent sounds (Figure 9). After 500
generations, the signals were predominantly silent and
low-amplitude, with fewer high-amplitude sounds. This
might reflect difference in the robustness of the system
for generating quiet versus loud signals, with louder sig-
nals being more specific in terms of the parameters
needed to produce them, and therefore more evolutio-
narily fragile. It is possible that additional pressures,
such as a noisy environment, larger signal repertoires,
or considerations of what types of signals are naturally

most salient to mammalian auditory systems (Owren &
Rendall, 2001) might be needed for loud signals to be
maintained over the generations.

3.4 Adding environmental noise

To follow up on the issue of realistic model signals get-
ting quieter over the course of evolution, we ran two
sets of six realistic and abstract model simulations in
which noise was added to each signal just prior to
inputting it to each receiver. The noise consisted of six
values (one corresponding to each perceiver input)
drawn at random from a uniform distribution between
0 and 0.01. This did indeed result in the realistic model
signals consistently having louder signal at generation
500 (See Figures 10 and 11). Interestingly, although the
range of sounds produced by the realistic model was
still restricted to a few types (bottom part of Figure
11), it appears that these signals could be generated via
a variety of muscle activation patterns (top part of
Figure 11). The addition of the noise also caused the
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Figure 6. Examples of realistic model signals at generation 500. Top: the outputs produced by the median fitness producer in
response to the three intended function inputs for the first six simulations of the realistic version (to save space, the other 14
simulations are not shown). Functions are in rows and simulations are in columns. Bottom: the signals, that is, the inputs given to the
receivers, corresponding to each of the producer outputs shown above. In the realistic model, the producer outputs were treated as
laryngeal muscle activations. These were fed into the vocal tract simulation and an acoustic signal was synthesized. This acoustic
signal was then converted to a very low-resolution (two time bins and three frequency bins) spectrogram and these spectrograms
were given to the receivers as input. Therefore, in the top plots the spatial matrix depiction does not have any significance while in
the bottom plots the spatial layout does have meaning: the rows correspond to different frequency bins within the 20–2000 Hz
range and the columns correspond to time bins within the 0.0–0.5 s range. In the bottom plots, the acoustic powers have been
exponentially scaled by a power of 1/4 to make the differences between the quiet sounds more visible (future simulations might try
using the log of the acoustic powers to avoid this issue). Darker pixels indicate higher values. Audio files are available at http://
dx.doi.org/10.6084/m9.figshare.1195957.
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realistic model’s communicative success to increase
more slowly for both models and to have more variable
and overall lower communicative success at generation

500. This was not the case for the abstract model
(Figure 12). Overall, the experiment shows that the
addition of noise can indeed result in added selection

Figure 7. Examples of the audio signals generated by the realistic model, prior to conversion into the low-resolution spectrograms
that were given as input to the receivers (see the bottom part of Figure 6). The signals are the same as those shown in Figure 6. The
top half of the figure shows each signal’s raw waveform. The bottom half shows high-resolution spectrograms (not mel-scaled). In
the spectrograms, darker colors indicate higher values.
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Figure 8. Examples of individual abstract model signals at generation 1 (i.e. before any evolutionary change). Top: the outputs
produced by the median fitness (i.e. the 50th most communicatively successful) producer in response to the three intended function
inputs for the first six simulations of the abstract version. Bottom: the signals, that is, the inputs given to the receivers,
corresponding to each of the producer outputs shown above. Compare to Figure 5. Darker pixels indicate higher values.
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pressure for loud sounds to be included in the reper-

toire. The audio files corresponding to each of the

sounds in Figure 11 can be downloaded from http://

dx.doi.org/10.6084/m9.figshare.1373913.

3.5 Gene changes over time

The increase in extremity of weights over evolutionary
time is a reflection of genetic drift over time. As evolu-
tion proceeds, the genomes tend to drift toward more
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Figure 9. Examples of realistic model signals at generation 1 (i.e. before any evolutionary change). Top: the outputs produced by
the median fitness producer in response to the three intended function inputs for the first six simulations of the realistic version.
Bottom: the signals, that is, the inputs given to the receivers, corresponding to each of the producer outputs shown above.
Compare to Figure 6. Darker pixels indicate higher values.

1 2 3 4 5 6

Simulation

1

2

3

1

2

3

Pr
od

uc
er

 o
ut

pu
ts

Pe
rc

ei
ve

r i
np

ut
s

Figure 10. Examples of abstract model signals evolved in a noisy environment at generation 500. Top: the outputs produced by the
median fitness producer in response to the three intended function inputs for the first six simulations of the realistic version.
Bottom: the signals, that is, the inputs given to the receivers, corresponding to each of the producer outputs shown above. Darker
pixels indicate higher values.
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Figure 12. Communicative success as a function of generation in simulations in which random noise was added before inputting
signals to the receivers. The top left panel shows each abstract simulation’s median signaler communicative success. The bottom left
panel shows each abstract simulation’s median receiver communicative success. The right two panels show the signaler and receiver
communicative success scores for the realistic model. Compare to Figure 2.
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Figure 11. Examples of realistic model signals evolved in a noisy environment at generation 500. Top: the outputs produced by the
median fitness producer in response to the three intended function inputs for the first six simulations of the realistic version.
Bottom: the signals, that is, the inputs given to the receivers, corresponding to each of the producer outputs shown above. Note the
larger number of loud signals compared to Figure 6. Darker pixels indicate higher values. The corresponding audio files are available
at http://dx.doi.org/10.6084/m9.figshare.1373913.
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and more extreme gene values, as shown in Figure 13.
A follow-up experiment to test this idea confirmed
that if weights are restricted to the initial range of
possible values, the genomes and the producer out-
puts no longer show the same drift toward more
extreme values over time. This is naturally reflected in
the producers’ outputs. Five abstract and five realistic
model simulations where weights were restricted to
always remain between 21 and 1 showed very similar
patterns to those reported above, when weights were
unbounded. One difference was that the realistic
model simulations showed greater variability in their
pattern of change in communicative success over gen-
erations and showed on average slower increase in
communicative success. The realistic model’s acoustic
signals were similar to those reported above as were
the abstract signals except that the abstract signals
were not as extreme in value. Note also that in simu-
lations in which there is no selection, there is still a
tendency to drift toward more extreme gene values,
although there is no increase in communicative
success.

3.6 Muscle activations and sound loudness

Figure 14 shows example muscle activities of each pro-
ducer’s three signals for simulation 1 of the realistic
version of the model without the added noise. Muscle
values for signals that were relatively loud can be com-
pared to muscle values for signals that are relatively
quiet. Sounds were classified as loud versus quiet using
an amplitude threshold defined as the sum of the mel
frequency spectrogram (prior to reducing its resolution)
being at least 0.01. Note that the muscle activations are
essentially random at the beginning of the simulation,
before any adaptation has taken place. Looking at the
full set of muscle activations it is apparent that positive
interarytenoid activation is essential for producing a
relatively loud sound, but also that whether a sound is
voiced does not solely depend on interarytenoid activa-
tion and is also dependent on the particular combina-
tions of other muscles’ activities; there are sounds for

which interarytenoid is positively activated but the
sounds are quiet. The generation 500 muscle activities
also illustrate that, in some cases, over the course of
evolution the muscle activities tend to take on rather
extreme values (for example, signal 1’s posterior and
lateral cricoarytenoid values).

3.7 Fitness landscapes

In this section we explore the idea that the slower con-
vergence of the realistic model is due to differences in
the smoothness of the fitness landscapes across model
versions (Levinthal, 1997). Since each individual has 27
genes that encode that individual’s neural network
weights, the fitness landscape resides in a 27-dimen-
sional space. It would be difficult to visualize and inter-
pret the complete 27-dimensional fitness landscape.
Instead, we systematically altered each gene individu-
ally while leaving others at their original values, then
assessed the effect this alteration had on the individu-
al’s performance. We chose to focus on the median-
performing individual at generation 500. In the produc-
tion case this corresponds to the individuals whose sig-
nals are shown in Figures 5 and 6. We tested four
different changes to gene values: 25/7, 22.5/7, 2.5/7,
and 5/7. These values were chosen to match the range
of mutations actually used in the simulations, which
were random increments or decrements between 25/7
and 5/7 (see Section 2.5).

Figure 15 shows the results of these tests, providing
an approximation of the fitness landscapes across simu-
lations. Darker colors in the figure indicate increases in
fitness (which is proportional to communicative suc-
cess) and lighter colors indicate decreases in fitness.
Medium gray indicates no change in fitness. The first
observation we can make is that as the genes are chan-
ged, no change and decrease in fitness (i.e. communica-
tive success) are far more common than increase in
fitness. This reflects the fact that the simulations had
by generation 500 evolved to at least locally maximal
communicative success.

Abstract Realistic

Figure 13. Left: the median individual’s genes plotted as a function of generation for the first simulation of the abstract model
version. Right: the median individuals’ genes plotted as a function of generation for the first simulation of the realistic model version.

Warlaumont and Olney 197



The other observation that can be made about
Figure 15 is that the realistic version of the model,
shown on the right side of the figure, showed more rag-
gedness in the fitness landscapes. In other words, small
changes in individual genes were more likely to lead to
substantial differences in fitness for the realistic version

of the model than for the abstract version. Using a rea-
listic signaling apparatus, that is, a humanoid vocal
tract model, made for rougher fitness landscapes, at
least in the space surrounding the end state solution.
The introduction of a body increases the complexity of
the communication evolution problem. This should
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Figure 14. Muscle activities for each producer’s three signals for simulation 1 of the realistic version of the model with added
noise. Signals from generation 1 are in the left column and signals from generation 500 are in the right column. The three signals are
each displayed in different rows so that their muscle activities can be viewed as a group and compared to each other. Within each
panel, each of the six muscles has its own column. Each point corresponds to the degree of activation of the given muscle for the
given signal number for each of the 100 producers at the specified generation. Cyan × indicate the muscle values for sounds that
are very quiet whereas black + indicate the muscle values for sounds that exceeded an amplitude threshold defined as the sum of
the mel frequency spectrogram being at least 0.01.
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Figure 15. Producer fitness landscapes for the abstract (left) and realistic (right) versions of the model. See text for details on how
the landscapes were created. Black indicates a fitness increase of 0.5 and white indicates a fitness decrease of 0.5. Medium gray
indicates no fitness change. The middle column of each fitness landscape shows this no-change baseline. For brevity, only the first six
of the 20 simulations of each version are shown.
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have implications for the neural circuitry required to
support a system of multiple distinct and stable vocal
signal types.

4 Discussion

We compared two versions of a computational model
of vocal signal evolution, one that used abstract signals,
similar to previous models, and one in which signals
were synthesized through simulation of a human vocal
tract. Both model versions converged to a near opti-
mum state where the individual successfully communi-
cated all three signals. There were differences, however,
in the number of generations it took to converge to this
near-optimal state, in the signals that ended up being
converged upon, and in the ruggedness of the fitness
landscapes. On average, the embodied, realistic-signal
model improved in performance more slowly than the
abstract model. The realistic version also exhibited
more variable rates of adaptation across simulations.

The realistic model evolved signals that had charac-
teristics very different to those of the abstract signals.
First of all, the signal elements input to the receivers
were not independent from one another. When one
spectrogram pixel increased in amplitude, the others
tended to as well. In contrast, the values of the elements
of the abstract model signals could vary more indepen-
dently from each other. Second, and related to the first
point, the realistic model’s three signals tended to be
more similar to each other, as measured in terms of
both intra- and inter-signal variability. Third, the ratio
of intra- to inter-signal variability was higher for the
realistic model, which indicates a lower degree of signal
separation in the realistic model and illustrates the
challenges faced by the realistic version compared to
the abstract version, possibly explaining why the realis-
tic version on average took more time to adapt.
Estimations of the fitness landscapes showed rougher
landscapes for the realistic model version, further sup-
porting the idea that the constraint of evolving signals
using a realistic vocal tract makes the adaptation pro-
cess as well as the resulting signals less robust. The
slower average rate of convergence is also consistent
with this idea.

These results suggest that computational neural net-
work models of vocal signal evolution remain capable
of evolving multiple distinct signals when subjected to
physiological and physical constraints imposed by the
primate vocal tract and the acoustic modality. At the
same time, embodiment in a more physiologically rea-
listic signaling system can affect both the rate and out-
come of signal evolution, and the physiological and
physical constraints create, at least in the present case,
a fitness landscape that is more rugged than the fitness
landscape for a model with purely abstract signals.
This reflects the fact that the process of phonation, on

which most primate vocal signals rely, involves a com-
plex and nonlinear relationship between motor actions
and resulting sound, as was observed upon examining
the realistic model’s muscle activations in comparison
to the signals’ acoustic amplitude (Fletcher, 1996). The
signalers and receivers can be seen as evolving interper-
sonal synergies (Riley, Richardson, Shockley, &
Ramenzoni, 2011) in which the degrees of freedom of
the two groups of individuals become coupled in ways
that respect the nonlinearities of the motor and sensory
systems and of the mechanics and acoustics of the vocal
tract. The differences we observed between the realistic
version and the abstract version justify increased atten-
tion to physiological and modality-specific factors in
models of communication evolution (see Turvey, 1990,
for a more general argument in favor of considering
the relationship between the motor system and the
physical world when studying motor control).

An obvious advantage of using a realistic vocal tract
is that all the resulting signals are similar to sounds that
humans do indeed produce. The actual sounds that the
realistic model converged upon were only semi-realistic
in terms of representing the types of reflexive signals
humans can make. Within a simulation, one of the
model’s signals was always a silent sound (Figures 6
and 7). Another signal was usually a breathy sound.
The third signal tended to either be a slight variant of
the first two sounds or was a much louder sound, simi-
lar to a moan. Interestingly, the tendency for two of
the signals to often be close variants of each other may
be quite realistic, as it is known that non-human pri-
mate vocal calls exhibit continuous gradations (Oller &
Griebel, 2014; Price, 2013). The present study thus indi-
cates that continuously varying call types could poten-
tially result from genetic adaptation of neural control
of the vocal tract even when the functions being served
by the signals are completely distinct and independent.
When noise was added, the range of types of signals in
the repertoire did not change, but the signals were more
likely to include at least one or two of these louder
moaning sounds. However, when noise was added, the
number of signals that the realistic model successfully
evolved was sometimes lower than when there was no
noise; this was not the case for the abstract model with
noise simulations (see Nowak & Krakauer, 1999, for
more on how noise can reduce the number of signals in
a repertoire). The fact that the addition of environmen-
tal noise adds sensitivity to the realistic model’s evolu-
tion further exemplifies the potential interactions that
may occur between bodies, neural circuitry, and envi-
ronment. The abstract modeling approach cannot
account for these realistic interactions.

The model was simplified to have a maximum of
three signals and to involve only static manipulations
of laryngeal muscles with no change over time in mus-
cle activation, and with all lung and upper vocal tract
muscles remaining constant across all sounds. These
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simplifications certainly restricted the extent to which
the model could possibly converge on a full primate-
like repertoire of vocal calls. Future work could pre-
sumably improve on this limitation by lifting these
restrictions. One feature of primate vocalizations that is
not addressed by our model is their sequential organi-
zation, including both within-signal temporal variation
and variation in sequencing of signals (Arnold &
Zuberbühler, 2006; Simmons & McRae, 2014).
Recurrent neural network architectures may allow
future work to address the emergence of primate-like
signals that involve temporal sequences (Di Paolo,
2000; Ryan et al., 2001; Seys & Beer, 2004; Werner &
Dyer, 1992).

Future work should explore additional variations on
these models, for example varying the population size,
number of signals to be communicated, perceptual
encoding of the signals (such as log-transforming the
energies in the spectrograms, changing the frequency
ranges represented, and changing the resolution of the
spectrograms), and genetic algorithm parameters.
Alternative neural network architectures and genetic
encodings should also be explored. Different modes of
genetic encoding of neural network properties, such as
aspects of neuronal development, will be particularly
important in future work since direct encoding of
neural weights within the genome is not biologically
realistic and is also unlikely to scale up to larger neural
network models (Cangelosi, Parisi, & Nolfi, 1994;
Stanley & Miikkulainen, 2003; Werner & Dyer, 1992).

The finding that realistic physiological and physical
constraints affected the kinds of signals that evolved is
consistent with the idea that differences in the vocal
and auditory apparatus across species are partly
responsible for differences in their evolved signals. This
is supported by Negus’s findings (as cited in Ploog,
1992) that human larynges are more specialized for
phonation than those of canids, which are more specia-
lized for phonation than those of animals like horses.
Computational modeling of different vocal tract con-
figurations also provides support for the importance of
variations in vocal tract shape (De Boer, 2010, 2012).
The evolution of the vocal tract and the evolution of
neural circuitry for controlling that vocal tract should
in the future be addressed in combination, as has been
done in some other domains of evolutionary simulation
(Chiel & Beer, 1997; Sims, 1995). A related issue worth
exploring is how communicative vocal signals may
have evolved from non-communicative functions of the
vocal tract (Davis & MacNeilage, 1995; Goldstein,
Byrd, & Saltzman, 2006; MacNeilage, 1998; Nolfi,
2005). For example, the larynx plays a role both in
breath control and in phonation, with the former being
phylogenetically older. The present work supports the
role of the embodied production mechanism in shaping
the evolution of neural controllers and perceivers; an
important next step is to study the evolution of neural

controllers serving different functions, for example one
communicative and one related to breathing or feeding,
but making use of the same bodily structures.

As noted Section 1, the majority of work on human
vocal adaption has focused on vocal learning, specifi-
cally on learning to produce and perceive speech
sounds. One future goal is to combine modeling of the
evolution of vocal signals with modeling of vocal learn-
ing (see also Ackley & Littman, 1992; Batali, 1994;
MacLennan & Burghardt, 1994; Nolfi, 2005; Nolfi &
Floreano, 1999; Smith, 2002; Werner & Dyer, 1992).
There is evidence that while reflexive primate vocaliza-
tions share many acoustic features across infant and
adult productions, in some cases learning shapes the
form of the calls over the course of development
(Seyfarth & Cheney, 1986). Furthermore, it has been
proposed that motor control for speech production
draws on neural networks in the limbic system and
brainstem that are used to generate reflexive vocaliza-
tions as well as other reflexes involving vocal tract
structures (Barlow et al., 2009; Barlow, Farley, &
Andreatta, 1999; Deacon, 1989; Ghazanfar &
Takahashi, 2014; Ghazanfar et al., 2012; Grillner,
1982; Jürgens, 2002; Schulz et al., 2005). It therefore
makes good sense to build models of reflexive signal
production as well as of speech production that incor-
porate more ancient evolved vocal networks as well as
the capability to learn to utilize them in the service of
producing novel sounds. Building models of the evolu-
tion of neural circuits that produce reflexive signals
such as cries, laughs, screams, moans, and lip smacks is
a prerequisite for this more comprehensive modeling of
human vocalization that takes into account both reflex-
ive signals and speech. The present work represents an
initial step in this direction. Including learning on the
part of the perceivers is also important (Nolfi, 2005),
especially in the case of vocal signaling given that while
the vocal productions of non-human primates are rela-
tively fixed, their capacity for perceptual learning of
responses to communicative signals appears much
greater (Owren & Rendall, 2001).

Finally, producing and perceiving communicative
signals using biologically realistic effectors and sensors
is only one aspect of embodiment (Chiel & Beer, 1997;
Pezzulo et al., 2011). Many other features of the world
and body are relevant to the evolution of communica-
tion systems. For example, having to act with a physi-
cal body comprised of arms, legs, and so on, and
having to interact with the world, including other
agents, using vision, touch, and other modalities, are
aspects of embodiment that have been considered in
previous models of the evolution of communication
abilities (Cangelosi & Parisi, 2001; Parisi, 1997; Steels
& Vogt, 1997). These other aspects of embodiment are
also important in understanding the conditions under
which human communication may have evolved and
under which it develops. Furthermore, other parts of
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the body and the environment can affect the way in
which sounds are perceived and produced, for example
by attenuating the amplitude of sounds in ways that
can affect the signaling systems which evolve (Di
Paolo, 2000). The energetic cost of signal production
might also be an important factor (Levin, 1995;
Oudeyer, 2005). Additionally, the functions served by a
signal have been previously shown to co-evolve in inter-
esting ways with the form of a signal (Di Paolo, 2000;
Marocco & Nolfi, 2007; Quinn et al., 2003); how this
will be affected by the use of biologically realistic sound
production mechanisms is a topic for future study.
Ultimately, it would be worthwhile to create models of
embodied communication emergence that take into
consideration the many facets of embodiment and their
interaction with one another, including the physical
generation of sound by the body (Nolfi, 2005).
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