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a b s t r a c t

Vocal motor development in infancy provides a crucial foundation for language development. Some
significant early accomplishments include learning to control the process of phonation (the production
of sound at the larynx) and learning to produce the sounds of one’s language. Previous work has
shown that social reinforcement shapes the kinds of vocalizations infants produce. We present a neural
network model that provides an account of how vocal learning may be guided by reinforcement. The
model consists of a self-organizing map that outputs to muscles of a realistic vocalization synthesizer.
Vocalizations are spontaneously produced by the network. If a vocalizationmeets certain acoustic criteria,
it is reinforced, and the weights are updated to make similar muscle activations increasingly likely to
recur. We ran simulations of the model under various reinforcement criteria and tested the types of
vocalizations it produced after learning in the different conditions. When reinforcement was contingent
on the production of phonated (i.e. voiced) sounds, the network’s post-learning productions were almost
always phonated, whereas when reinforcement was not contingent on phonation, the network’s post-
learning productions were almost always not phonated. When reinforcement was contingent on both
phonation and proximity to English vowels as opposed to Korean vowels, the model’s post-learning
productions were more likely to resemble the English vowels and vice versa.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Human infant vocal development

During the first year of life, human infants make considerable
progress in learning to produce speech-like sounds. One of the
first achievements in prelinguistic vocal development is acquiring
the ability to control phonation, producing voiced sounds at will
(Oller, 2000). Basic modal phonation is so readily produced by a
healthy adult that its complexities may easily be overlooked. In
fact, phonation involves active settings of a number of muscles
that contribute to the positions, compressions, and stresses in
the tissues of the larynx (Titze, 1994). To further complicate
things, it has recently become clear that the larynx and the upper
vocal tract interact nonlinearly (Titze, 2008). How infants learn
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to control this system in order to support phonation is an open
question.

Soon a number of other milestones are achieved, such as ex-
pansion of the range of pitches, durations, and vocal qualities pro-
duced, and the emergence of syllabic consonant–vowel timing
(Koopmans-van Beinum & van der Stelt, 1986; Oller, 2000; Oller
& Lynch, 1992; Stark, 1980). Toward the end of the first year of
life, infant vocalizations have been reported to begin to show adap-
tation to the phonetic characteristics of the particular language
environment as opposed to those of other languages (de Boysson-
Bardies, Halle, Sagart, & Durand, 1989; de Boysson-Bardies & Vih-
man, 1991). For example, a study by de Boysson-Bardies et al.
(1989) of 10-month-old infants frommonolingual French, English,
Cantonese, and Arabic speaking households compared the vowel
sounds produced during canonical babbling by each infant to the
vowels and their frequencies in adult speech in the household lan-
guage. The study found that mean first and second formant fre-
quencies of vowels produced by infantswere significantly different
across language backgrounds and that the patterns of differences
matched those estimated for adult speech for the four languages.
The results were taken as evidence that a child’s language environ-
ment influences the range of movements of the infant’s articula-
tors, particularly the tongue and lips, supporting the development
of the vowel system of the target language.
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1.2. Reinforcement in early vocal development

The human infant develops within a social environment of in-
teraction with parents and other adults and children. For this rea-
son, the developing social brain has recently become a focus in
infancy research (e.g., Blakemore, 2010; Grossmann & Johnson,
2007). Speech production development is one of the many behav-
iors that develops in the context of and is shaped by social inter-
action. Caregivers direct vocalizations (such as acknowledgments,
imitations, playful vocalizations, and object labels) toward their
infants as well as smiling at, looking at, and touching their in-
fants. These caregiver behaviors, particularly the vocal ones, are
modulated in response to infants’ vocalization behaviors (Gros-
Louis, West, Goldstein, & King, 2006; Papoušek & Papoušek, 1989)
and they serve as reinforcers to the infant: experimental work has
shown that contingency of maternal responses on infant vocaliza-
tion leads to increased infant rates of vocalizing (Goldstein, King, &
West, 2003).

In addition to social sources, reinforcementmay also come from
internal sources. For example, the high auditory salience of a self-
produced sound or its matching to the infant’s auditory prefer-
ences may function as reinforcers. It is likely that auditory salience
and preference are influenced both by innate factors and by ex-
posure to ambient language input. Salience-based reinforcement-
learning, though it has not been addressed in research on
development of vocalization abilities, has been shown to be fea-
sible in a non-neural-network computational model of eye move-
ments for joint attention (Lewis, Deák, Jasso, & Triesch, 2010).
Whether it originates from social sources or from internal prefer-
ences, the idea is that positive reinforcement for producing speech-
like vocalizations facilitates the development and increased usage
of the reinforced vocalizations, consistent with the principles of
operant conditioning (Domjan, 2010).

Functionally, positive reinforcement provides an agent with
feedback that its vocalization was on the right track, without di-
rectly indicating what the motoric target is. It is useful to compare
reinforcement-based learning to two other types of learning, unsu-
pervised self-organization (e.g., in learning by Kohonen maps and
Hebbian networks) and supervised learning (e.g., utilized by feed-
forward and simple recurrent networks that learn via the delta
rule and backpropagation). On the one hand learning from rein-
forcement does, unlike unsupervised learning, rely on the model’s
receiving feedback about how well it performed. However, this
feedback is not as targeted as in supervised learning in that the
exact desired modeled behaviors are not assumed to be known by
the entity providing the feedback.

Reinforcement-based learning is suitable for situations where
the optimal behavioral or motoric output is unknown, as when
a modeler or roboticist wishes to make a realistic synthesizer
produce certain types of sounds. Infants also may not have direct
access to the correct motor configurations for producing target
vocalizations, so reinforcement from caregivers or the infants’ own
learned or innate auditory preferences may serve as useful guides
in the infants’ learning to produce vocalizations of a given type.

1.3. Previous vocal development models

Additionalmechanisms likely also play important roles in learn-
ing to produce speech-like sounds. One proposal is that adapta-
tions of infant vocalizations to the ambient language result from
self-organized perceptual and perceptual-motor learning. For ex-
ample, it has been argued that by monitoring their own vocaliza-
tions, infants learn sensorimotor mappings that enable them to
reproduce sounds heard from others (Kuhl & Meltzoff, 1996; Vih-
man, 1993). Most computational neural network modeling work
to date has focused on this mechanism and not on reinforcement
(note that the two are notmutually exclusive) (Guenther, Ghosh, &
Tourville, 2006; Heintz, Beckman, Fosler-Lussier, & Ménard, 2009;
Oudeyer, 2005;Warlaumont, Westermann, & Oller, 2011; Wester-
mann & Miranda, 2004; Yoshikawa, Asada, Hosoda, & Koga, 2003).

The DIVA (Directions Into Velocities of Articulators) model
(Guenther et al., 2006; Guenther, Hampson, & Johnson, 1998) fo-
cuses on self-organizing synaptic mappings between auditory, so-
matosensory, andmotor brain regions. The DIVAmodel is assumed
to have knowledge about which specific vowels and consonants
exist in its language and their acoustic properties (for example,
the first three formant frequencies). During a ‘‘babbling’’ phase,
the model randomly moves its articulators, i.e., its tongue, jaw,
and lips. Learning consists of updating the synaptic mappings be-
tween the motor and sensory cortices to reflect the associations
between articulatory motor commands and their somatosensory
and auditory consequences discovered during the babbling expe-
rience. When the model’s random movements happen to produce
a synthesized sound that corresponds acoustically to a sound in its
language, the synaptic mappings from a premotor speech sound
layer to motor cortex and to sensory cortices are also updated. The
effect is that future activation of the speech sound simultaneously
activates the appropriatemotor commands and inhibits the appro-
priate auditory and somatosensory expectations. The inhibition of
auditory and somatosensory regions enables the model to detect if
there is any error in its production of the sound and if so to make
appropriate motor corrections.

The DIVA model is the most comprehensive and well-tested
model of human speech sound learning to date. It has been com-
pared to adult fMRI data and has been used to model normal adult
performance under various experimental manipulations, differ-
ences in hearing impairment and stuttering, and robustness in the
face of developmental changes across childhood in the size and
shape of the vocal tract (Callan, Kent, Guenther, & Vorperian, 2000;
Guenther et al., 2006; Max, Guenther, Gracco, Ghosh, & Wallace,
2004; Perkell et al., 2007). However, there are a number of as-
pects of early vocal learning that it has not yet addressed. For one,
it has not yet been used to model self-initiated behavior; instead
speech sounds are activated directly by the modeler (Guenther
et al., 2006). Relatedly, it does not directly address the role that
reinforcement might play in shaping spontaneous vocal behavior.
Finally, it does not address phonatory learning, i.e. learning to pro-
duce voicing and learning to control the pitch, amplitude, etc. of
vocalizations, despite this being a major aspect of early speech de-
velopment.

Several other models, narrower in scope than the DIVA model,
aim to explain how infants might learn to imitate vocalizations
produced by others via Hebbian learning of perceptual-motor
connections (Heintz et al., 2009; Warlaumont et al., 2011;
Yoshikawa et al., 2003). These models each consist of two layers of
neurons, one auditory and one motor, with weighted connections
between the two layers. As in the DIVA model, learning in
these models involves having the model produce random motor
outputs and determining vocal tract configurations, which in turn
determine the acoustics of synthesized vocalizations. In Yoshikawa
et al. (2003), each model production is then imitated by a human
adult, and sensorimotor connections are updated in a Hebbian
fashion so as to link the acoustics of the adult imitation to themotor
outputs of the model. After training, adult vowels can be input and
themodel produces correct vowel imitations. InHeintz et al. (2009)
and Warlaumont et al. (2011), learning from model productions
is based on Hebbian associative learning between the acoustics of
the model’s own vocalization and its motor outputs. In addition
to learning based on self-production, these models include passive
listening events, in which the model receives external auditory
input, as if from a caregiver, and the model self-organizes its
perceptual receptive fields and/or its Hebbian perceptual-motor
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connections as a result. However, in these models, the utility of
such passive learning from adult input for improving imitation
accuracy has not been established, although in a similar model
by Westermann and Miranda (2004) it has been shown that such
adult input does produce ambient language effects on perceptual
representations. Presumably even if passive perceptual input does
not produce improvements in imitation accuracy, it is possible that
were the post-learning spontaneous vocalizations of these models
to be explored, ambient language effects of the sort shown in the
literature on human infantsmight be observed. This possibility has
not yet been examined.

Kanda, Ogata, Takahashi, Komatani, andOkuno (2009) have also
addressed learning to produce the vowels of a given language.
Their model is a recurrent neural network with parametric bias
(RNNPB). In a first phase of learning, inputs are sequences of adult
vowels. Themodel is trained to predict, on the basis of the acoustics
and corresponding motor parameters at the current and previous
time steps, the acoustics and correspondingmotor parameters that
will be input at the next time step. After this first phase of training,
the model is able to segment sequences of vowels based on where
prediction errors are highest. In a second phase of learning, the
model learns to represent segmented vowels as constant values
of two ‘‘parametric bias’’ neurons. After this second phase of
learning, the parametric bias neurons can be activated by the
modeler and the network accurately produces the correct vowels.
Although the model performs well on segmentation, recognition,
and production tasks, its plausibility is questionable. It is assumed
that during training themodel knows, for each adult vowel, both its
acoustic parameters and the precise articulatorymotor parameters
that generated the vowel. Such an assumption is consistent with
Liberman and Mattingly’s motor theory of speech perception
(Liberman&Mattingly, 1985),which posits that frombirth, infants’
perception of speech sounds is innately linkedwith the articulatory
gestures that produce those speech sounds. However, whether
infants innately, without any prior learning, possess direct access
to the precise motor commands they would need in order to
produce a sound that they hear someone else in their environment
has produced is a strong assumption, especially given the fact that
infants do not at birth or even within the first few months of
life produce vocalizations that sound like speech, except perhaps
accidentally (Oller, 2000).

Otherwork byOudeyer (2005) is unique in that it does explicitly
address ambient language effects on spontaneous vocalizations.
Themodel consists ofmultiple agents, eachwith a layer of auditory
neurons connected to a layer ofmotor neurons that in turn connect
to three articulatory parameters: lip rounding, tongue height, and
tongue position. At each iteration, an agent is randomly chosen and
its motor neurons are randomly activated. The agent adjusts, in a
self-organizingmanner, its neuro-articulatorweights aswell as the
connection weights between the two layers. The topographically
closest neighbor hears the first agent’s vocalization, has activation
propagated from its auditory to its motor layer and then also
updates its neuro-articulatorweights. In thisway, the second agent
becomes more likely to spontaneously produce sounds similar
to those of the first agent. The model provides an impressive
demonstration of how self-organized learning and interaction
among agents can affect clustering of the vowel space as well
as adaptation of vocal productions to others in the environment.
However, by design it does not includemodeling of either social or
intrinsic reinforcement effects. Also, like the other models, it does
not address phonatory learning.

Thus, despite the insights obtained from previous work, many
aspects of early vocal motor learning in human infancy remain to
bemodeled. For one, reinforcement has not been incorporated, de-
spite its important role in the empirical human infancy literature.
Second, the focus has been on responses to caregiver vocalizations
or production of given sequences of phones and has rarely (an
exception being Oudeyer, 2005) addressed spontaneous produc-
tions. Third, previous work has focused heavily on learning vowel
sounds and has not addressed development of control over phona-
tion, which is also an important aspect of speech production. In the
present study, we introduce a neural network architecture that ad-
dresses each of these three aspects of early vocal motor learning.

1.4. Our model

Our model consists of a topographically organized layer of neu-
rons that control a physiologically realistic vocalization synthe-
sizer (Boersma, 1998; Boersma & Wennink, 2010) via neuromotor
connections. During learning, the model explores its vocalization
capabilities. If and only if it produces a vocalization that is re-
inforced, its neuromotor connections are updated to reflect its
current neuronal and muscle activations. This dependence of
learning on reinforcement is consistent with neurophysiological
findings that learning inmotor cortex ismodulated by dopamine, a
neurotransmitter strongly associatedwith reinforcement (Molina-
Luna et al., 2009). Updating of neuromuscular weights follows the
learning procedure for the self-organizing map (Kohonen, 1990),
a popular type of neural network consisting of a layer of neurons
with topographically-organized receptive fields that adapt to the
environment. The topographic organization corresponds to the to-
pographic organization observed throughout the brain.

The combination of self-organizing topographic map learning
and reinforcement gating represents a novel neural network mod-
eling approach. Note that the approach has a different empha-
sis frommost computational reinforcement learning work such as
that focusing on temporal difference learning and related meth-
ods (Sutton & Barto, 1998). For example, we do not consider rein-
forcement that is delayed. Another difference is that in our model
the primary function of reinforcement is to gate the learning of
neuromotor connections. While reinforcement learning systems
have been developed that use neural networks for processing sen-
sory inputs, only a few attempts have been made to make neu-
ral networks that use reinforcement to learn how to produce
behavioral outputs (Barto, 1995; Izhikevich, 2007). Those that have
have shown promising results, but have not to our knowledge used
the self-organizing map network or addressed problems of learn-
ing to produce complex motor output patterns such as controlling
over a dozen muscles as is done here. The benefit of integrating
reinforcement into neural networks is that, if successful, it could
extend the application of self-organizedneural network learning to
problems ofmotor learning. In perceptual learning, self-organizing
processes can take advantage of statistical regularities in the sen-
sory environment in order to learn structured representations. In
motor learning that is driven by random exploration, however,
purely self-organized learning is of limited value since there are
not statistical regularities in themotor productions— they are pro-
duced at random. Using reinforcement to gate learning is a simple
modification of self-organized learning that allows the self-
organized learning process to take advantage of statistical regular-
ities in themotor space with regard to what actions lead to reward
compared to what actions do not.

2. Method

2.1. Vocalization synthesis and analysis

All of the simulations in the present study used Boersma’s ar-
ticulatory speech synthesizer, implemented in Praat, a free speech
analysis and synthesis software (Boersma, 1998; Boersma & Wen-
nink, 2010). The synthesizer consists of amodel of the human vocal
tract, including the lungs, trachea, larynx, pharynx, oral cavity, and
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nasal cavity. The walls of the vocal tract are modeled as coupled
mass-spring systems. The synthesizer includes several options for
the number of masses used in modeling the vocal folds; for the
present study, we used the default two-mass option. The synthe-
sizer also offers three sizes of vocal tract: adult female, adult male,
and child; we used the default adult female version, since our
target vowel acoustic measurements came from a study of adult
female speakers. Based on the volume of air in the lungs and the
activation of laryngeal and upper vocal tract (i.e., pharynx, oral cav-
ity, and nasal cavity)muscles, specified by the user, the synthesizer
calculates the positions and mechanical parameters of the vocal
tract walls and the air pressures at each section of the vocal tract
over time. The fluctuating air pressure at themouth determines the
synthesized sound. An advantage of using this synthesizer over the
synthesizers used inmost previousmodels of infant vocal develop-
ment is that it allows formotor control of the larynx to bemodeled,
which is necessary for phonatory development to be addressed.

For this study, all synthesized sounds lasted 0.5 s. Similar to
the example given by Boersma (1998), the Lungs parameter, which
represents the speaker’s lung volume, was set to 0.2 at time 0 s and
to 0 at time 0.1 s (−0.5 corresponds to maximum exhalation and
1.5 corresponds tomaximum inhalation). The activations of twenty
muscle parameters, listed in Table 1, varied across vocalization
events according to the procedures described below. Within a
vocalization event muscle activations were static, i.e. there was
no intra-vocalization variation. How each muscle’s activation for
a given vocalization event was determined is described below in
Section 2.3.

The synthesized sounds were analyzed automatically, also in
Praat, to get estimatedmeasures of fundamental frequency (f0) and
first and second formant frequencies (F1 and F2) at 250 ms after
the start of vocalization synthesis. When Praat could not identify
an f0 at this time in the sound, which tends to happen when the
synthesized sound is silent or breathy but lacking phonation, then
the f0 was considered undefined. Ellis’s RASTAMAT toolbox (Ellis,
2007) was used to convert frequencies from Hz to mel, as the
nonlinear mel scale better reflects the frequency scaling of the
human auditory system. f0, F1, and F2 were the quantities that
determined whether or not a given vocalization was reinforced, as
described in Section 2.5 below.
Table 1
The vocal tract synthesizer muscles controlled by the neural network. Laryngeal
muscles are those mainly involved in phonation and articulatory muscles are those
mainly involved in controlling the shape of the upper vocal tract.

Muscle number Name Grouping

1 Interarytenoid Laryngeal
2 Cricothyroid Laryngeal
3 Vocalis Laryngeal
4 Thyroarytenoid Laryngeal
5 Posterior Cricoarytenoid Laryngeal
6 Lateral Cricoarytenoid Laryngeal
7 Styloglossus Articulatory
8 Masseter Articulatory
9 Upper Tongue Articulatory

10 Lower Tongue Articulatory
11 Orbicularis Oris Articulatory
12 Vertical Tongue Articulatory
13 Transverse Tongue Articulatory
14 Levator Palatini Articulatory
15 Risorius Articulatory
16 Genioglossus Articulatory
17 Hyoglossus Articulatory
18 Mylohyoid Articulatory
19 Lateral Pterygoid Articulatory
20 Buccinator Articulatory

2.2. Neural network architecture

The neural network contained 25 neurons arranged on a 5 ×

5 grid. Each neuron had a spatial location defined by (x, y)
coordinates (see Fig. 1) and eachneuronhadmodifiable connection
weights to each of the twenty muscles. The connection weights
from each neuron to the set of all muscles determined a specific
state of the synthesizer’s vocal tract. In turn, each vocal tract state
was associatedwith a synthesized vocalization forwhich f0, F1, and
F2 traces could be automatically estimated (although they could be
undefined at the measured point in time).

2.3. Learning

Prior to learning, the neurons’ connection weights to the vocal
tract muscles were chosen from a uniform random distribution
ranging between 0 and 1. Each simulation had 1000 learning
Fig. 1. Schematic diagram of the neural network model.
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events, each of which corresponded to a discrete time step. A
learning event began by randomly activating the motor neurons
in an exploratory fashion. The extent of this random exploration
depended on whether the previous vocalization event had been
reinforced. If the model had not received reinforcement on the
previous event, its activation was drawn from a uniform random
distribution ranging from zero to one. Alternatively, if the model
had indeed received reinforcement for its previous vocalization,
instead of resetting the neuronal activations, a small amount of
noise, ranging from −0.25 to 0.25 was added to the previous
learning event’s neuron activations, subject to the constraint that
the resulting activations had to remain between 0 and 1. Thus,
if the previous vocalization had been reinforced, exploration was
more precisely targeted. At this point, themost active node (i.e. the
node with the highest activation value as determined by the
procedure just described) and its closest neighbors were identified
and local excitation and lateral inhibition was effected as follows:
The most active neuron had 2, 3, or 4 closest neighbors depending
onwhether itwas located on a corner, on an edge, or on the interior
of the motor neuron grid, respectively. These neurons remained
excited. All other neurons besides that most active neuron and its
2–4 neighbors were inhibited by setting their activations to zero.

Activation was then propagated from the neurons to the
muscles. Muscle activations were given by

m =
a
a
W + n

where m is a row vector representing the activation level of each
vocal tract muscle, a is a column vector representing the activation
of each neuron, and W is a matrix giving the connection weights
from each neuron (in rows) to each muscle (in columns). Thus,
muscle activations were a function of the normalized neuron
activations propagated through the weighted neuromuscular
connections. The n is Gaussian noise added at the muscular level,
intended to model incidental variation in the shape of the vocal
tract. Such variation would correspond to changes in infants’ vocal
tract positioning due to feeding, mouthing of objects (Fagan &
Iverson, 2007), or postural stabilization. Vocal-tract-level ‘‘noise’’
facilitated broad exploration by the model of its full range of
vocal capabilities. As with the exploratory activation at the neuron
level, noise at the muscular level was dependent on whether
the previous vocalization had been reinforced. Muscular noise
was more restricted if the model had previously been reinforced,
having a standard deviation of 1 if the previous vocalization had
not been rewarded and a standard deviation of 0.25 if it had. After
the muscle activations for the current event were determined, a
vocalization corresponding to those activations was synthesized,
the vocalization’s f0, F1, and F2 were estimated, and based on
these values it was determined whether the network would
receive reinforcement for the vocalization event. The specific
acoustic criteria for reinforcement are described in more detail in
Section 2.5.

If no reinforcementwas given, the event concludedwithout any
changes to the network weights. However, if reinforcement was
in fact given, the weights from the motor neurons to the vocal
tract muscles were modified according to a self-organizing map
algorithm (Kohonen, 1990),

Wp,t+1 =


Wp,t + α(m − Wp,t) if


(xp − xq)2 + (yp − yq)2 ≤ θ

Wp,t otherwise,

whereWp,t gives the connection weights from neuron p to the vo-
cal tract muscles at the time of the current event, (x, y) are the co-
ordinates on themotor neuronmap for a given neuron, and q is the
most active motor neuron. α is the learning rate and was set to 0.8
for the simulations presented here, based on pilot work indicating
that compared to smaller learning rates (e.g. α = 0.2) there was
no substantial difference in performance other than slower learn-
ing with the latter. θ is the size of the learning neighborhood and
was set to 1. In other words, the neuromotor connection weights
were adjusted so that muscle activations similar to those just pro-
duced would be more likely to be produced on subsequent events.
At this point, the learning event was complete.

2.4. Performance evaluation

At the beginning and end of each simulation, we tested the
network to see what kinds of vocalizations it would spontaneously
produce. Each simulated networkwasmade to vocalize 25 times in
the same manner as in training except that no reinforcement was
ever provided and there was no noise added at the muscular level.
The muscular-level noise was left out in order to provide a clear
view on what the network learned at the neural level.

2.5. Reinforcement criteria

Seven different reinforcement conditions were evaluated, with
the goal being to compare the sounds produced and the neural
representations developed across the different conditions. We ran
50 simulations for each reinforcement condition.

In the first condition, reinforcement was always given, no mat-
ter what the network produced. In the second condition, rein-
forcement was given if the sound produced by the model had a
defined f0 at time 0.25 s which had the effect of reinforcing voiced
(i.e. phonated) but not unvoiced (e.g., silent or breath-only) sounds.
Although the reinforcement criterion is quite simple, the act of
phonation involves coordination of a number of muscles (see Ta-
ble 1) in order to cause vibration in a nonlinear system of laryngeal
tissues (Buder, Chorna, Oller, & Robinson, 2008; Titze, 2008).

In the third condition, in order to be reinforced the model’s vo-
calization had to not only be phonated (operationalized as having
defined f0) but also had to be similar to one of thirteen American
English vowels. Similarity to a vowel was operationalized as Eu-
clidean distance in the two-dimensional space defined by F1–f0
and F2–F1. Most previous efforts to characterize vowels quantita-
tively have focused on fundamental, first, second, and sometimes
third formant frequencies, with this method of differencing bark-
scaled or log values (the mel scale is similar to the bark scale)
having precedent in studies of both human vowels and vowels pro-
duced by articulatory synthesizers (Heintz et al., 2009; Johnson,
2005). The model had to become increasingly similar to one of the
vowels, or else fall within a threshold degree of similarity, in or-
der to be reinforced. The threshold degree of similarity was 3 mels
(in other words, the target region around a vowel was a circle with
a 3 mel radius). Throughout training, a record was kept, for each
American English vowel, of the top ten model vocalizations that
were closest to that American English vowel. The increasingly sim-
ilar criterion for reinforcement was defined such that on a given
trial, the model’s production, if it did not fall within the 3-mel ra-
dius of an American English vowel, had to at least be closer to one
of the American English vowels than one of the top ten previous
model vocalizations.

The fourth condition was the same as the third except that ten
Korean (instead of English) vowel targets were used. The American
English and Korean vowel targets were taken from a prior study
of vowels produced by adult female native speakers of the two
languages (Yang, 1996).

The fifth reinforcement condition was the same as the third ex-
cept that instead of all American English vowels being targeted,
only the vowel /a/was reinforced. The sixth and seventh conditions
were the same as the fourth except that the individual target vow-
els were /e/ and /u/, respectively. Focusing on single vowel targets
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allowed us to see howwell themodel can learn to produce specific
vowels, and to clearly visualize the effects of reinforcement.

The reinforcement in any of these conditions could potentially
model both extrinsic and intrinsic reinforcement. An example
of extrinsic reinforcement in this domain would be a parent
preferentially responding to voiced sounds as opposed to very
quiet sounds or silence (parents almost certainly do respond
contingently in this way, as discussed in Section 1.2). Similarly,
parents may respond contingently to vowel sounds that sound like
those in their own language(s), especially when they interpret the
child’s sound as a word. An example of intrinsic reinforcement
would be when a child is made happy, engaged, curious, or some
other positive emotion when they produce a sound as opposed to
silence — this seems highly likely since the production of voiced
sounds at the larynx will stimulate both the auditory system
and the somatosensory system. With regard to vowels, intrinsic
reinforcement is also possible. In our model, reinforcement for
production of vowels from a specific language could correspond to
the satisfaction or interest generated in a child when they produce
a sound that they recognize as corresponding to sounds they have
often heard others, such as their caregivers and siblings, produce.
Regardless of the source of reinforcement, the same mechanism
of reinforcement-gated learned utilized by our model could be at
play.

We tested both phonatory and articulatory performance after
learning. Greater post-learning tendency both to produce voiced
sounds and to produce sounds resembling the target language
would indicate generalizability of the reinforcement-gated self-
organized learning approach. In particular, it would show that
the model can, using a single learning mechanism, simultaneously
learn two foundational speech skills, phonation and vowel articu-
lation.

3. Results

3.1. Phonation before and after learning

As shown in Fig. 2, before any learning, across simulations the
mean number of vocalizations that had identifiable f0 was approx-
imately 5 (out of a possible 25). When the model was reinforced
at every trial, regardless of phonation, the mean number of vocal-
izations with identifiable f0 after learning was only 2.28. For the
various reinforcement conditions where reinforcement was con-
tingent on phonation, themeannumber of vocalizationswith iden-
tifiable f0 after learning ranged between 20.2 and 24.5. For each
reinforcement condition, the difference between the number of
sounds with f0 before versus after training was highly significant,
p < 0.001. This indicates that when reinforcement was contin-
gent on voicing (i.e. phonation), the model learned to reliably pro-
duce sounds that were clearly voiced (not silent or purely breathy).
When reinforcementwas given all the time,without regard to voic-
ing, themodel’s production of sounds thatwere voiced actually de-
creased after learning.

Fig. 3 illustrates, for one of the networks that was reinforced
for any sound with identifiable f0, the sounds that were produced
before and after learning when each of the 25 neurons was acti-
vated in isolation. As can be seen in Fig. 3, most of the spectro-
grams of sounds produced by the neurons before training showed
little acoustic energy and were essentially silent. In contrast, af-
ter learning, almost all of the neurons produced sounds with high
acoustic energy, indicating that the network learned to produce
audibly voiced sounds, that is, to phonate. It can also be seen that
there was a range of durations, spectral qualities, and amplitudes:
apparently, the simple requirement of defined f0 at time 0.25 left
opportunity for the neural network to develop representations for
Fig. 2. Mean numbers of vocalizations with identifiable fundamental frequency
before and after learning. Means are over the 50 simulations within a given
reinforcement condition. Error bars indicate standard errors.

motor control of soundswith a variety of different phonatory char-
acteristics. Finally, note that after learning had taken place, the net-
work exhibited topographic organization — neurons located near
each other tended to produce soundswith similar-looking spectro-
grams.

Fig. 4 shows the laryngeal muscle activations responsible for
producing the vocalizations spectrograms in Fig. 3. The figure
shows consistencies with what is known about roles of the vari-
ous laryngeal muscles in phonation. In particular, muscle number
4, the thyroarytenoid, a muscle that courses beside each vocal fold
and promotes phonation by adducting the vocal folds (it also re-
laxes and shortens them), is highly activated, aswould be expected.
Additionally, muscle number 6, the lateral cricoarytenoid, shows
greater activation than muscle number 5, the posterior cricoary-
tenoid; this corresponds to the fact that the lateral cricoarytenoid
is a vocal fold adductor and therefore promotes phonationwhereas
the posterior cricoarytenoid is a vocal fold abductor, inhibiting
phonation.

3.2. Vowel types produced before and after learning

To investigate the types of vowels produced under the various
vowel reinforcement conditions, we used the same set of test vo-
calizations as was used for the phonation evaluations. We com-
pared the simulations in which any sound with identifiable f0 was
reinforced, in which vocalizations resembling any of the American
English vowels were reinforced, and inwhich vocalizations resem-
bling any of the Korean vowels were reinforced. The dependent
variables were the number of sounds falling within 3 mel of the
American English vowels and the number of sounds falling within
3 mel of the Korean vowels.

As can be seen in Fig. 5, all of the networks produced fewer
vowels resembling the vowel targets before learning than after
learning. This pattern may be driven in part by the fact that before
learning all networks produced fewer sounds with defined f0, and
if a sound did not have defined f0, it was automatically considered
not similar to any of the target vowels.

After learning, the American-English-reinforced model pro-
duced the most sounds falling within the 3 mel target range of the
American English vowels. A mixed-model regression with vowel
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Fig. 3. Spectrograms of sounds produced by individually activating each neuron in one of the simulations from the second reinforcement condition, in which any sound
with identifiable f0 was reinforced. Before learning (pictured at top), three neurons’ productions were judged as being voiced: these are located at row 2, column 4; row 4,
column 1; and row 4, column 3. After learning (pictured at bottom), all neurons’ productions were judged as being voiced except for one, located at row 3, column 1.
and simulation as random effects, reinforcement for American En-
glish versus Korean as a fixed effect, and number of vowels resem-
bling American English targets as the dependent variable showed
that the difference between reinforcement conditions in the
number of American-English-like productions after learning was
statistically significant, β = 0.23, p < 0.001. While the mean
number of vowels falling within 3 mel of the Korean targets was
overall lower for all reinforcement conditions (some possible
explanations for this bias will be given in the Discussion), the
Korean-reinforcedmodelwas the best-performing. Amixedmodel
regression with number or vowels resembling the Korean targets
as the dependent variable revealed the effect of the reinforced lan-
guage to again be statistically significant, β = 0.28, p < 0.001.
Note that β , the standardized regression coefficient, is comparable
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Fig. 4. Connection weights from each neuron in one of the simulations from the second reinforcement condition (the same simulation as in Fig. 3) to each of the laryngeal
vocal tract muscles (see Table 1). Darker colors indicate higher weights and thus higher muscle activations.
across the two target languages, indicating that the effect of rein-
forced language was similar in magnitude for both. Fig. 6 shows
the relative formants of the productions from each version of the
model after training. In sum, the model learned to produce more
of the vowels from the language for which it was reinforced.

For a closer look at the model’s learning of specific vowels,
we compared the simulations in which only the American En-
glish /a/ was reinforced, in which only the American English /e/
was reinforced, and in which only the American English /u/ was
reinforced. The dependent variables were the number of sounds
falling within 3 mel of /a/, /e/, and /u/. As can be seen in Fig. 7,
it was the simulations that were reinforced for /a/ that produced
the most vowels resembling /a/ after learning. The differences
between /a/-reinforcement and /e/-reinforcement and between
/a/-reinforcement and /u/-reinforcement were both statistically
significant with p < 0.001 in both cases. Similarly, the simulations
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Fig. 5. Mean numbers of vowels within 3 mel of American English (left) and Korean (right) vowels for models in three different reinforcement conditions before and after
learning. Means are over the 50 simulations within a given reinforcement condition. Error bars indicate standard errors at the item level.
Fig. 6. Relative vowel formants of the vocalizations produced by individually activating eachmotor neuron from all the simulations in each of three different reinforcement
conditions. Left: reinforced for any soundwith defined f0 . Middle: reinforced for anyAmerican English vowel. Right: reinforced for any Korean vowel. Each gray dot represents
one neuron’s vocalization. Vocalizations from the 50 simulations in the same condition are superimposed. For each reinforcement condition, the targets of training are shown
in black characters with circles delineating the 3 mel radius around each target.
Fig. 7. Mean numbers of vowels within 3 mel of /a/, /e/, and /u/ for models trained on /a/, /e/, and /u/, before and after learning. Error bars indicate standard errors.
reinforced for /u/ produced more vowels resembling /u/ than the
simulations reinforced for /a/ and /e/, p < 0.001 in both cases.
The simulations reinforced for /e/ produced more vowels resem-
bling /e/ than the simulations reinforced for /a/, p = 0.02, and
marginally more than the simulations reinforced for /u/, p = 0.10.
Overall, fewer productions were close to the /e/ target than were
close to the /a/ or /u/ targets. Fig. 8 shows the relative formants
of each model’s productions after training. The plots confirm that
while the model readily learned to produce precise /a/’s and /u/’s,
it had more difficulty learning to produce /e/ as evidenced by the
broad distribution of vocalizations produced in simulations where
/e/ was the target vowel.

4. Discussion

We have presented a new neural network model wherein ex-
ploration and reinforcement are integrated with topographic self-
organized learning. A layer of neurons is connected to the muscle
inputs of a realistic human vocal tract synthesizer. The model ex-
plores its vocalization abilities by randomly activating neurons,
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Fig. 8. Relative vowel formants produced when activating neurons in isolation from networks in trained on /a/, /e/, or /u/. Neurons from different simulations in the same
reinforcement condition are superimposed. The targets of training are shown in black characters with circles delineating the 3 mel radius around each target.
with some noise added at the muscular level. When it receives re-
inforcement for a vocalization, it updates its neuromuscular con-
nection weights so that similar motor commands become more
likely to be produced in the future. We show that the model can
learn at least two foundational speech-related skills: production
of phonated sounds and production of specific vowel types.

One of the contributions of this work is that it specifies at a
mechanistic level how reinforcement, which is known to play a
role in speech development (Goldstein et al., 2003; Goldstein &
Schwade, 2008; Gros-Louis et al., 2006), may be used by human in-
fants as they develop sounds with speech-like characteristics. For
example, it has been shown that when caregivers’ vocal reinforce-
ment is contingent on infants’ production of vocalizations, the fre-
quency of infant vocalization increases (Goldstein et al., 2003). In
ourmodel, reinforcement that is contingent on phonation (asmea-
sured by the sound having an identifiable f0) signals the model to
modify the connection weights from its motor neurons to its vocal
tract muscles so that future neuronal activity will be more likely
to result in phonated sounds. As discussed in Results, the laryn-
geal muscle activation levels produced after learning correspond
to what would be expected based on previous physiological stud-
ies of speech production.

Note, however, that our model is agnostic regarding the source
of reinforcement. Reinforcement could come directly from social
sources, such as a mother vocalizing toward her infant. It is also
possible for an infant to be reinforced intrinsically, for example
by producing an appealing sound, where the appeal is based on
auditory salience or similarity to sounds that the infant has pre-
viously heard other individuals produce. In future work, it would
be good to model these distinct possible sources of reinforcement
in more detail, for example incorporating extrinsic reinforcement
that has contingencies similar to those observed in naturalistic par-
ent–child interactions or in experiments with children. Intrinsic
reinforcement could perhaps be modeled by adding an auditory
system that perceives different sounds as having different levels
of saliency, where reinforcement would increase as saliency in-
creases. In addition to or instead of saliency, information content
could be used. The auditory system could also learn from sounds
produced by speakers of the target language, perhaps altering its
sense of saliency or desirability. In either case, the extrinsic or
intrinsic reward could be used to gate learning according to the
model proposed here.

In addition to learning to phonate, the model also develops
a propensity toward producing vowels like those for which it
has been reinforced, whether that be the whole set of American
English or Korean vowels or a single isolated vowel. A process
of reinforcement-gated learning may be one of the mechanisms
underlying babbling drift findings, i.e. shifting of vowels toward
those that are most frequent in the infant’s language environ-
ment (de Boysson-Bardies et al., 1989). Previous neural network
models of speech production learning have all depended criti-
cally on learning sensorimotor correspondences in order to achieve
ambient-language effects (Guenther et al., 1998; Heintz et al.,
2009; Kanda et al., 2009; Warlaumont et al., 2011; Westermann &
Miranda, 2004; Yoshikawa et al., 2003). None of those prior stud-
ies report data on spontaneous vocal productions, although those
that include learning of connections between motor neurons and
the vocal tract would be expected to exhibit ambient language
effects on spontaneous productions. Our model, in contrast, re-
quires no learning of sensorimotor correspondences, relying in-
stead on reinforcement-gated learning of neuromotor connections
and therefore illuminating an additional pathway through which
the ambient language environment may shape spontaneous pro-
ductions.

The model appears to exhibit not only learning effects but also
biases with regard to the sounds the realistic vocal tract simulator
can learn to reliably produce. These are (1) a bias against the
vowel /e/ compared to the vowels /a/ and /u/ and (2) a bias toward
better performance on American English vowel targets compared
to Korean targets. Regarding the first bias, physiological vocal tract
constraints are known to play a strong role in vowel development,
as Oudeyer discusses with regard to his own model of speech
sound learning and evolution (Oudeyer, 2005), and presumably
play a role in the human system as well. In support of this, it is
observed that /e/, /i/, and /u/ are less frequent in human infants’
vocalizations than /a/ (de Boysson-Bardies et al., 1989; Ishizuka,
Mugitani, Kato, & Amano, 2007). Thus, the model’s weakness on
/e/ and /i/ relative to /a/ fits with the human infant data. However,
the model’s strong performance on /u/ does not correspond to the
pattern fromhuman data. Furthermore, the synthesizer used in the
present study models an adult female vocal tract and the acoustic
vowel targets are based on average adult female productions from
the literature, making the particular pattern of difficulty on mid
and high front vowels such as /e/ in the present study even more
surprising.

We suspect the difficulty with /i/ and /e/ reflects issues with
our acoustic measure for evaluating vowel similarity. Although the
geometry of the vocal tract model was intended to be similar to
that of a typical adult female, there are likely still a number of
differences from the vocal tracts of the adult females whose mean
vowel fundamental and formant frequencies were used as targets.
It is known that any differences across speakers’ vocal tract shapes
can affect vowel perception (Johnson, 2005). Additionally, the
sounds produced after training in the /e/ target simulations to our
ears tended to soundmore similar to /e/ than the sounds produced
after training in the /u/ target simulations sounded similar to /u/.
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Thus, it may be that a better metric for comparing the vowels
produced by the model to those in other languages is essential
for performance that better reflects that of human infants. First
and second formant frequencies (F1 and F2) are the most popular
metric for quantifying vowel acoustics, which is consistent with
the fact that they are the most prominent perceptual dimensions
identified throughmultidimensional scaling (Johnson, 2005). It has
been shown that perception of formant frequencies is sensitive to
fundamental frequency (f0), and there is support for the idea that
measures that make formant frequencies relative to each other
and to f0, such as F1/f0 and F2/F1 or F1–f0 and F2–F1 (which
become ratios rather than differences when log frequencies or
approximately log frequencies such as in the mel or Bark scales
are used), may prove to be better for vowel classification (Johnson,
2005). Here we have taken this approach, using F1–f0 and F2–F1.
We also tried using simply F1 and F2, without any subtraction
of other frequencies, and found roughly the same pattern of
results. It may be important that there is strong evidence from the
human vowel acoustic literature that the fundamental frequency
and formant frequencies, regardless of which of the above
transformations are used, do not completely account for listener
perceptions of vowel type (Heintz et al., 2009; Ito, Tsuchida, &
Yano, 2001; Johnson, 2005; Zahorian & Jagharghi, 1993).

Future research should explore other less traditional acoustic
correlates of vowel productions as well as human listener judg-
ments to see if better results on /i/ and /e/ can be obtained. A par-
ticularly useful approach might be to replace the a priori choice of
acoustic features defining the vowels with a system, such as a Heb-
bian network or a multilayer perceptron trained with backprop-
agation, that learns the mappings between acoustic features and
human listener vowel labels for model-produced sounds.

The second bias, toward better performance on American En-
glish vowels compared to Korean vowels, could be due in part to
the way the vowels are distributed in the different languages. The
American English vowels tended to be clustered together more
continuously in formant space whereas there were distinct gaps
between groups of Korean vowels (see Fig. 6). Themodel’s produc-
tions tended to cover a fairly continuous region of space regardless
of which language it was trained on, and reinforcement for a par-
ticular language tended to shift and reshape this region, but with-
out breaking the continuity of the vowel production space. Since
we set a fixed 3 mel boundary for the vowels, the greater separa-
tion between vowel formant means with Korean than that within
American English resulted in more vowel productions landing in
the spaces between the Korean vowel circles. This bias might dis-
appear if instead of evaluating the model based on the number of
its vowels fallingwithin a fixed 3-mel circle, themodel’s language-
specific performance were evaluated based on the number of its
vowels falling within the borders of the complete vowel space.
Consistent with the observation of variability and overlap inmodel
productions both before and after learning, the vowels produced
by children at various ages from 3 months up through 5 years are
observed also to occupy continuous regions of formant space (de
Boysson-Bardies et al., 1989; Ishizuka et al., 2007; Kent & Murray,
1982), as are the vowels produced by adults during spontaneous
speech (Harmegnies & Poch-Olivé, 1992; Nicolaidis, 2003). Thus,
although eventually children’s vowel productions shift over devel-
opment toward those vowels characteristic of the language, a great
deal of variability and overlap among vowels is always present in
spontaneous productions. Interestingly, some of this variability in
adult productions could potentially prove useful to infants during
word learning (Rost & McMurray, 2009).

Previous studies involving other neural network models of
infant vocal development have not reported quantitative results
regarding ambient-language effects on spontaneous vocal produc-
tions and have not addressed the development of phonation. In
the future, doing so would permit direct comparison of our results
to those of the previous models discussed in Section 1. Addition-
ally, more detailed comparison of the behavior of this and other
models to the behavior of human infants and their caregivers will
be helpful in further developing the work. Increased efforts to tie
neural network modeling directly to neurophysiological findings,
to anatomical changes across the lifespan, and to patterns of dif-
ference observed in clinically relevant groups, such as those with
hearing impairment or those with autism, would also be expected
to improve the models and therefore increase their scientific and
clinical value.

Our mechanism and those of previous models are not mutually
exclusive. Reinforcement-gated motor learning, perceptual learn-
ing, and sensorimotor associative learning are likely all involved
in infant vocal development. The various mechanisms likely also
interact with each other. For instance, changes in perceptual rep-
resentations as a result of exposure to sounds from an ambient
language may affect how the infant perceives sounds to be salient
or otherwise intrinsically rewarding. A model that combines per-
ceptual learningwith reinforcement-guidedmotor learningwould
provide a more complete account of how infants come to produce
the vowels of their native language, since it would not assume as
much prior knowledge as the current model about what vowels
should be reinforced. In the future, a more comprehensive model
of vocalization development that combines these various mecha-
nisms should be developed and evaluated. Additionally, all exist-
ingmodels of vocal developmentmust be extended in the future to
address problems of the development of fine-grained dynamic se-
quences, such as those required for the precise syllable timing that
also emerges in the first year of life and is a critical prespeech skill.
Finally, it is worth exploring the possibility that the same princi-
ples exemplified by our model may generalize to domains such as
the development of gestures and reaching skills.

5. Conclusions

We have presented the first neural network model to address
how reinforcement may play a role in human vocalization devel-
opment. It introduces an approach that combines self-organization
with selective reinforcement. The model exhibits several general
characteristics of human infant vocal development, including sen-
sitivity of vocal productions to reinforcement, development of
phonatory skill, and development of a tendency of vowel produc-
tion acoustics to bemore consistentwith the vowels in the ambient
language than with vowels from other languages. These positive
results warrant the further development and improvement of our
model and others that address the role of reinforcement in vocal
motor learning.
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