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Over the course of a day, babies may babble playfully, 
coo socially, scream manipulatively, attempt to produce 
spoken words and phrases, laugh, cry, observe quietly, 
and sleep silently. And they may hear adult speech, 
siblings’ screaming, soothing lullabies, recorded voices, 
running water, dogs’ barking, rustling of clothes, and 
many, many other sounds. The sounds depend on the 
infant’s age, physical environment, culture, family struc-
ture, personality, and other factors, some of which may 
be relatively stable and others of which may change 
within or across days, weeks, and months.

All theories intended to explain human communica-
tion development (atypical or typical) make assump-
tions (implicit or explicit) about the statistics of the 
inputs infants receive. And all must account for the 
statistics of the sounds children produce and how they 
change over time. It is therefore crucial that ecological 
data on children’s input and productions be recorded 
in naturalistic settings and with durations long enough 
to capture the range of contexts and fluctuations infants 
actually experience and exhibit.

Thanks to innovation in infant-friendly wearable 
audio recorders and related tools for quantifying pat-
terns in everyday soundscapes (Casillas & Cristia, 2019; 
Gilkerson et al., 2017; VanDam et al., 2016), researchers 
are now able to characterize infants’ sound experiences 
over the course of an entire day. Foundational discover-
ies about how these everyday soundscapes matter for 
young children used machine estimates of overall quan-
tities of specific event types (e.g., number of adult words 
heard over the day). Human listeners’ annotations of 
short sections of audio sampled from daylong record-
ings have led to further insights. Now, an additional 
suite of discoveries is emerging through analyses that 
focus on how sounds are distributed over the course of 
a day.
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Abstract
The sounds of human infancy—baby babbling, adult talking, lullaby singing, and more—fluctuate over time. Infant-
friendly wearable audio recorders can now capture very large quantities of these sounds throughout infants’ everyday 
lives at home. Here, we review recent discoveries about how infants’ soundscapes are organized over the course of a 
day. Analyses designed to detect patterns in infants’ daylong audio at multiple timescales have revealed that everyday 
vocalizations are clustered hierarchically in time, that vocal explorations are consistent with foraging dynamics, and 
that some musical tunes occur for much longer cumulative durations than others. This approach focusing on the 
multiscale distributions of sounds heard and produced by infants is providing new, fundamental insights on human 
communication development from a complex-systems perspective.
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One overarching finding emerging from these studies 
is that structure in infants’ auditory and vocal experi-
ences is nested across seconds, minutes, and hours. 
There is a general tendency for acoustic events to be 
distributed nonuniformly. Sounds occur in nested clus-
ters such that there are many short gaps between sounds 
along with relatively fewer large gaps. A few sound 
types occur a lot and cumulate to long total durations 
of experience with those sound types, and many other 
sound types are experienced less often. We suggest that 
this nonuniform organization has important implications 
for understanding and studying human communication 
development.

Hierarchical Clustering of Infants’ and 
Adults’ Vocalizations in Time

A complex system can be defined as a system comprising 
many interacting components organized at multiple lev-
els. The human brain-body-environment system is one 
of many naturally occurring complex systems. Research-
ers have analyzed the behaviors of many natural and 
simulated complex systems in search of commonalities 
across domains. One result is an understanding that com-
plex systems tend to generate behavior that fluctuates at 
multiple nested scales (Kello, 2013; Kello et al., 2010; 
Viswanathan et al., 2011). This leads to similarity in how 
a pattern looks when viewed zooming in or out, or frac-
tality. There are many reasons scientists have found frac-
tality in behavior intriguing. One reason is that the degree 
to which there is such nesting in animal behavior often 
correlates with environmental features. In one study, frac-
tality of human spatial search on a computer screen was 
higher when resources were clustered than when they 
were uniformly randomly distributed (Kerster et  al., 
2016). In another study, fractality of albatross foraging 
was greater when food resources were scarce compared 
with when they were plentiful (Viswanathan et al., 2011). 
It is possible that changes in fractality of search patterns 
are adaptive to the organism’s environment.

Another reason for interest in nested fluctuations is 
that changes in fractality can be predictive of important 
state transitions. For example, Stephen et al. (2009) 
found that there was a predictable peak (an increase 
followed by a decrease) in the amount of nested struc-
ture in adult participants’ eye movements immediately 
before they exhibited instances of mathematical insight. 
Stephen et al. noted that this pattern—increase in nested 
structure during times of reorganization—is a common 
feature of complex systems. Often this reorganization is 
purely self-organized; that is, it results from the internal 
evolution of the system’s state as its components interact 
with each other. Reorganization can also be initiated or 
influenced by external inputs to the system.

Bringing a nested-structure focus to study human 
infants’ communication, Abney et al. (2016) used the 
LENA (Language Environment Analysis) system (Gilkerson 
et al., 2017) to assess the degree of hierarchical clustering 
in infants’ and caregivers’ vocalizations during daylong 
recordings. LENA enables recording up to 16 hr of infant-
centered audio and provides automatic tagging of when 
infant and adult vocalizations occurred, categorizing infant 
vocalizations into prespeech sounds (cooing, babbling, 
squealing, talking, etc.) versus reflexive or vegetative 
sounds (cries, laughs, coughs, etc.). Abney et al. found 
that the difference between the number of vocalizations 
within one time interval and the number in the next con-
secutive interval is positively correlated with the size of 
the time intervals. In other words, there is more difference 
in vocalization quantity from one hour to the next hour 
than from one 5-min interval to the next 5-min interval, 
which is consistent with the nesting of vocalization 
clusters apparent in Figure 1.

In addition to demonstrating hierarchical clustering 
of both infants’ and adults’ vocalizations, Abney et al. 
(2016) found that the degree of nesting tended to match 
between infants and adults. This matching effect held 
even after controlling for matching in overall rates of 
vocalization and for temporal proximity between the 
vocalizations. Matching was also found to increase with 
infants’ age because adults’ scaling pattern became 
more similar to infants’.

Vocalization-to-Vocalization Changes:  
A Foraging Perspective

Analyses of foraging by humans and other animals have 
also yielded many examples of multitimescale, nonuni-
form patterns in behavior. Foraging can be considered 
broadly to pertain to a wide range of resource types 
and realms being searched (Todd & Hills, 2020). For 
example, when animals forage in space for prey and 
when human adults forage in cognitive semantic net-
works for items of a particular type, resources tend to 
be found in nested clusters over time and space (Kerster 
et  al., 2016; Montez et  al., 2015; Viswanathan et  al., 
2011). One way to characterize foraging behavior is to 
quantify the transitions between consecutive resource-
gathering events. From one event to the next (this tran-
sition is sometimes called a “step”), one can measure 
the distance individuals “travel” within a physical or 
feature space. One can also measure the time between 
the two events.

Using LENA recordings and their associated auto-
matically identified vocalization onsets and offsets, 
Ritwika et al. (2020) analyzed the acoustic differences 
and time elapsed between one vocalization and the 
next (Fig. 2, left panel). They asked whether infants’ 
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and adults’ vocalizations could be construed as foraging 
through pitch and amplitude space. They also looked 
for evidence that vocal responses from other individuals 
serve as “resources” for the foraging individual. Inspired 
by prior foraging research, Ritwika et al. fitted mathe-
matical distributions—normal, exponential, log-normal, 
or Pareto (power law)—to the observed acoustic step 
sizes (Fig. 2, right panel) and intervocalization intervals. 
These step sizes and time intervals spanned large 
ranges. Note that observing and measuring the longer 
step sizes and intervocalization intervals was possible 
only because of the length of the recordings.

Ritwika et al. (2020) found that for both infants and 
adults, the more time that elapsed between consecu-
tive vocalizations, the bigger the change in pitch and 
amplitude. This aligns with foraging in other domains 
(Montez et al., 2015; see also Hills et al., 2012). They 
also found that less time elapsed from one infant vocal-
ization to the next infant vocalization when the first 
was followed within 1 s by an adult vocalization than 
when it was not. Similarly, less time elapsed from one 

adult vocalization to the next adult vocalization when 
the first was followed within 1 s by an infant vocaliza-
tion than when it was not. This fits the hypothesis that 
vocalization is a type of foraging for social responses. 
It also corresponds with prior research on infant-adult 
turn taking. Ritwika et al. also observed that infants’ 
vocalization-to-vocalization pitch movements increased 
with age (which suggests increasing pitch exploration), 
whereas amplitude movements shrank. Adults’ vocaliza-
tion steps in both acoustic dimensions grew larger as 
the infants became older. These results connect existing 
research on infant-adult turn taking with interdisciplin-
ary work on foraging dynamics. They indicate that 
vocalization can be construed as an exploratory forag-
ing process and that infants’ and adults’ patterns of 
vocal exploration change over developmental time.

Multiple Timescales in the Musical 
Sound Types Infants Experience

Focusing now on what daylong audio can reveal about 
the distributions of specific types of sounds infants 
encounter, we turn to recent discoveries about musical 
sounds in the environment throughout the day. Mendoza 
and Fausey (2021) manually annotated daylong audio 
recordings second by second to identify when infants’ 
soundscapes were musical as well as the specific voices 
and tunes in the soundscapes. Because full waking days 
were annotated, it was possible to observe relatively 
rare musical voices and tunes and to observe the pro-
portional differences between more and less prevalent 
musical identities. As shown in Figure 3, instances of a 
given musical tune did not cumulate to the same pro-
portion of daily music as instances of other musical 
tunes; rather, infants encountered certain tunes much 
more than others.

How does this distributional nonuniformity matter 
for infants’ learning? One possibility is that highly famil-
iar tunes ground musical recognition, providing a base 
of deep expertise from which infants can learn to gen-
eralize to novel tunes. Experiences of numerous less 
available tunes may help infants establish this general-
ization capability (see Smith et  al., 2018, for related 
hypotheses about early learning in other domains). 
Indeed, it has long been known that word frequencies 
in natural language follow highly skewed (Zipfian) dis-
tributions and that this nonuniformity can help adults 
learn words (Hendrickson & Perfors, 2019). Skewed 
distributions can also improve adults’ category gener-
alization (Carvalho et al., 2021).

What could account for the nonuniformity of musical- 
tune distributions? As with many aspects of infant- 
caregiver interactions, possible factors include infant 
and caregiver preferences, the availability of a particular 
option in a caregiver’s memory, the appeal of novelty, 

Full Daylong Recording (~10 Hr)

1 Hr Within the Day

5 Min Within the Hour

Fig. 1. Illustration of the nested structure of infants’ vocalizations. 
The circles in the top panel show the onsets of automatically identi-
fied vocalizations in a 9-month-old infant’s daylong audio recording, 
from earlier in the day (left) to later in the day (right). It is apparent 
that the infant vocalized in clusters over the day, and some of the 
clusters were denser and/or longer lasting than others. The area with 
the gray background is an hour-long period and forms the basis of the 
middle panel. The middle panel thus presents a zoomed-in version of 
a portion of the top panel. Within that hour, the infant vocalized in 
clusters, and the pattern of clustering is similar to the clustering at the 
day level even though the timescale is much smaller. The area with 
the gray background is a 5-min-long period and forms the basis of 
the bottom panel. Even within the 5-min period, the infant vocalized 
in clusters. Again, the clustering shows similarity in its patterning to 
the clustering at the hour-long and daylong scales. This figure thus 
illustrates fractality (i.e., self-similarity across scales) in the patterning 
of infants’ vocalizations over time.



Multiscale Dynamics in Infant Audio 15

and the comfort of familiarity. Given the many related 
factors involved, and that complex systems composed 
of many interacting components often self-organize to 
generate multiscale patterns of behavior, the answer is 
likely to be complicated.

Future work along these lines may enable research-
ers to compare how distributions of musical (or other 
audio) stimuli are affected by differing living situations, 
family structures, and early-childhood education expe-
riences. Mendoza and Fausey’s (2021) initial work, 
especially given that the data set is available for reuse 
by other researchers, may also enable machine-learning 
researchers to test whether the nonuniformities of input 
experienced by human infants yield improved capaci-
ties for machine learning (see also Bambach et al., 2018; 
Ossmy et al., 2018). Such research may, in turn, enhance 
understanding of how these distributional features 
affect human infants’ perceptual learning.

Detecting Events Within Daylong Audio: 
Automatic Versus Manual Annotation

Automated algorithms available for annotating daylong 
child-centered audio include the LENA system’s propri-
etary software as well as a handful of open-source alter-
natives (Le Franc et  al., 2018; Räsänen et  al., 2021; 
Schuller et al., 2017). LENA annotates recordings with 
a closed set of mutually exclusive sound-source labels 
and estimates counts of adults’ words, the child’s vocal-
izations, and back-and-forth conversational turns 
between the child and adults. One huge advantage of 
automated annotation is that annotation time does not 
scale prohibitively with recording length. Another 
advantage is that exactly the same algorithm can be used 
across projects, which eliminates variation that can 
occur when human annotators with different life and 
professional experiences interpret sounds differently.
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Fig. 2. Examples from Ritwika et al.’s (2020) investigation of foraging patterns in infants’ vocalization. The diagram on the left shows a 
sample of some of the vocalization “movements,” or “steps,” of a 3-month-old infant’s prespeech sounds. Each point represents the mean 
pitch (log-transformed and normalized with respect to the entire infant-vocalization data set) and the mean intensity (also normalized) of a 
single vocalization. Each arrow corresponds to one step. The number next to each arrow represents the time that elapsed between the two 
vocalizations (i.e., the intervocalization interval). Acoustic-space step size was defined as the distance in the two plotted acoustic dimensions 
between the two vocalization points. The graph on the right shows the acoustic step-size distribution for prespeech sounds in a 2-month-
old infant’s recording, in cases when the first vocalization did not receive an adult’s response. The graph shows that smaller step sizes were 
generally more frequent, but that larger step sizes (spanning more than 2 SD and up to 5 SD in the acoustic dimensions) did occur. The blue 
curve shows the histogram of step sizes from the raw data. In this case, a log-normal distribution was the best type of function to fit the his-
togram. The log-normal fit is shown by the red curve. Comparing the specific parameters of log-normal fits across recordings and interactive 
contexts can provide information about how infants’ vocal dynamics change, such as with age or in relation to whether the infant is or is 
not engaged in vocal interaction with caregivers. The panel on the right was adapted from “Exploratory Dynamics of Vocal Foraging During 
Infant-Caregiver Communication,” by V. P. S. Ritwika, G. M. Pretzer, S. Mendoza, C. Shedd, C. T. Kello, A. Gopinathan, and A. S. Warlaumont, 
2020, Scientific Reports, 10, Article 10469, Fig. S3 in the Supplementary Information (https://doi.org/10.1038/s41598-020-66778-0). The original 
article is available under the Creative Commons CC-BY license.

https://doi.org/10.1038/s41598-020-66778-0
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However, the accuracy of automatic annotation is 
often lower than that of human listeners (e.g., Ferjan 
Ramírez et  al., 2021). Further, algorithms originally 
trained with specific data sets for specific purposes may 
not generalize well. For example, LENA was developed 
for the purpose of obtaining word, vocalization, and 
turn counts at the 5-min, 1-hr, and daylong levels and 
in home settings (Gilkerson et  al., 2017); using the 
detailed sound onset and offset times that the LENA 
algorithm provides might be unsuitable for research 
projects that demand very high accuracy and precision. 
Moreover, no automatic algorithms are currently up to 
the task of annotating many of the meaningful units 
within everyday recordings (e.g., Adolph, 2020). One 
issue with daylong child-centered audio recordings is 
that they are among the most difficult types of conver-
sational speech data for automated systems to tag accu-
rately (Casillas & Cristia, 2019).

An alternative is for human listeners to perform 
annotation. This can be an enormous undertaking—for 
example, 6,400 person hours were required to manually 
annotate the features, voices, and tunes in Mendoza 
and Fausey’s (2021) 35 daylong audio recordings. Infra-
structure supporting sharing data and protocols (e.g., 
Gilmore et  al., 2018; VanDam et  al., 2016) helps to 
maximize the value of such investments. For example, 
shared manual annotations can provide training and 
evaluation for machine algorithms (e.g., Le Franc et al., 
2018; Räsänen et al., 2021; Schuller et al., 2017), which 
in turn can provide new tools for annotating daylong 
recordings.

We expect that as algorithms for speech recognition 
and other automatic audio processing improve, and  
as data sets of human-annotated audio become 
increasingly available, it will become possible to auto-
matically identify words, emotions, and more within 
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Fig. 3. The daily distribution of different tunes for each of 35 infants in Mendoza and Fausey’s (2021) study. Each row corresponds to 
one daylong audio recording, segmented into unique tune identities (e.g., “Twinkle, Twinkle, Little Star,” “Itsy Bitsy Spider,” “Shake It Off,” 
“Everybody Loves Potatoes,” “Short Whistle”). Within a row, each distinct tune’s relative duration (i.e., its proportion of the day’s musi-
cal time) is shown, in order from the tune most available to the infant (left) to the tune least available (right). The observed proportion 
of each recording’s most available tune is marked by the thick white vertical line. The small white plus signs (+) on the left show the 
proportion that would be expected per tune if each tune were equally available to the infant. Recordings are sorted with those contain-
ing the fewest total number of distinct tunes on the top. Adapted from “Everyday Music in Infancy,” by J. K. Mendoza and C. M. Fausey, 
2021, Developmental Science, 24(6), Article e13122, Fig. 4A (https://doi.org/10.1111/desc.13122). The original article is available under 
the Creative Commons CC-BY-NC license.

https://doi.org/10.1111/desc.13122
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child-centered daylong audio recordings. Such advances 
will permit analyses of nested clustering in additional 
domains. They might also enable the detection of inter-
actions across domains that partially contribute to the 
skewed distributions and nested clustering patterns 
within domains.

Capturing daylong real-world audio recordings also 
raises privacy concerns. Researchers must explain the 
issues and enable participants to make informed deci-
sions about participation and use of their data. Some 
devices, such as the TILES recorder (Feng et al., 2018), 
provide investigators the flexibility to extract and col-
lect data on only specific features (e.g., speech onset 
and offset time, pitch estimates) from the audio input. 
Collecting feature data alone may better preserve pri-
vacy but may not be suitable for every research ques-
tion and limits reanalysis when improved automatic 
audio-processing tools become available.

Broader Implications and Future Directions

It is clear that, over the course of a day, infants’ vocal-
izations and auditory experiences are organized in pat-
terns that unfold at multiple timescales, from seconds 
to hours. The patterns likely extend to longer timescales 
(days, weeks, months), as well as to shorter timescales 
within utterances (Kello et al., 2017). Such multiscale 
behavior is characteristic of complex systems involving 
many interacting components, such as networks of neu-
rons and networks of locally interacting social agents 
(Kello et  al., 2010). It fits with the view that infant 
development emerges within a complex system of 
richly interacting components within and external to 
the infant (Frankenhuis et al., 2019; Oakes & Rakison, 
2020; Wozniak et al., 2016).

Future research should explore how patterns of pro-
ductions and input at shorter and longer timescales are 
related to other features of the physical and social envi-
ronment (e.g., material resources, culture, family struc-
ture). Such work could help identify some of the 
mechanisms contributing to the multitimescale patterns 
we have described. It would also build bridges with 
other disciplines, such as anthropology (Cristia et al., 
2017; Frankenhuis et al., 2019).

Future research should also explore the extent to 
which fractal analyses provide unique information that 
is not obtainable with other methods used to analyze 
time-series data that do not focus on the degree of self-
similarity across timescales (e.g., Jebb et al., 2015). An 
explicit focus on dynamics across timescales and eco-
logical contexts enables such comparisons.

Multiscale patterns in human infants’ auditory and vocal 
experiences may also relate to brain plasticity, mental and 
physical health, and cognitive development. Research with 

adult humans has documented individual differences in 
the balance between searching for resources in new 
places (exploration) and gathering resources in the current 
location (exploitation) across a range of spatial and cogni-
tive foraging tasks. These differences are often consistent 
across domains and associated with performance (Todd 
& Hills, 2020). Regarding early-life development, experi-
mental research using rodent models suggests that differ-
ences in the physical environment (e.g., a cage having or 
not having adequate nesting materials) can lead to differ-
ences in the predictability of maternal behavior, which in 
turn can lead to changes in offspring’s brain development 
and variations in cognition, memory, and anhedonia of the 
offspring (Glynn & Baram, 2019). Predictable, repeated 
interactions between a caregiver and infant may signal 
safety and slow the maturation of the brain’s corticolimbic 
circuitry, increasing plasticity and improving future emo-
tion regulation (Gee & Cohodes, 2021). However, unpre-
dictable, rare positive experiences, such as listening to a 
New Year’s holiday song, also seem to prolong brain plas-
ticity (Tooley et al., 2021). Most findings about how envi-
ronmental experiences affect brain plasticity derive from 
animal models. Translating this research to humans will 
be facilitated by detailed data on the distributions of dif-
ferent event types at daylong timescales and in highly 
naturalistic contexts; such assays would enable researchers 
to measure predictability and environmental enrichment 
in human development.

Conclusion

Data on infants’ vocal productions and auditory experi-
ences acquired from daylong real-world recordings reveal 
multitimescale fluctuations and skewed distributions of 
event types across domains. Such patterns often arise 
through self-organization of complex systems of many 
interacting components. The findings thus support a 
complex-systems orientation to human development and 
underscore the richness and complexity of development 
as it unfolds in a diverse range of physical, social, and 
physiological contexts.

Recommended Reading

Casillas, M., & Cristia, A. (2019). (See References). Provides 
a tutorial on how to start working with daylong audio 
recordings.

Cychosz, M., Romeo, R., Soderstrom, M., Scaff, C., Ganek, 
H., Cristia, A., Casillas, M., de Barbaro, K., Bang, J. Y., & 
Weisleder, A. (2020). Longform recordings of everyday life: 
Ethics for best practices. Behavior Research Methods, 52(5), 
1951–1969. https://doi.org/10.3758/s13428-020-01365-9. 
Provides an extensive discussion of ethical considerations 
when working with daylong audio recordings of children.

Kello, C. T., Brown, G. D. A., Ferrer-i-Cancho, R., Holden,  
J. G., Linkenkaer-Hansen, K., Rhodes, T., & Van Orden, 

https://doi.org/10.3758/s13428-020-01365-9
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G. C. (2010). (See References). Discusses multiscale 
dynamics in cognitive science in relation to underlying 
system characteristics and in connection to other scientific 
domains.

Rowe, M. L., & Snow, C. E. (2019). Analyzing input qual-
ity along three dimensions: Interactive, linguistic, and 
conceptual. Journal of Child Language, 47(1), 5–21. 
https://doi.org/10.1017/S0305000919000655. Reviews 
research on language input and its role in language 
development.

Warlaumont, A. S. (2020). Infant vocal learning and speech 
production. In J. J. Lockman & C. S. Tamis-LeMonda 
(Eds.), The Cambridge handbook of infant development: 
Brain, behavior, and cultural context (pp. 602–631). 
Cambridge University Press. https://doi.org/10.1017/9781 
108351959.022. Reviews research on infants’ vocal produc-
tion and speech development.
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