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Abstract: Two existing models of brain dynamics in epilepsy, one detailed
(i.e., realistic) and one abstract (i.e., simplified) are compared in terms of
behavioral range and match to in vitro mouse recordings. A new method is
introduced for comparing across computational models that may have very
different forms. First, high-level metrics were extracted from model and in
vitro output time series. A principal components analysis was then performed
over these metrics to obtain a reduced set of derived features. These features
define a low-dimensional behavior space in which quantitative measures of
behavioral range and degree of match to real data can be obtained. The
detailed and abstract models and the mouse recordings overlapped consid-
erably in behavior space. Both the range of behaviors and similarity to mouse
data were similar between the detailed and abstract models. When no
high-level metrics were used and principal components analysis was com-
puted over raw time series, the models overlapped minimally with the mouse
recordings. The method introduced here is suitable for comparing across
different kinds of model data and across real brain recordings. It appears that,
despite differences in form and computational expense, detailed and abstract
models do not necessarily differ in their behaviors.
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The application of computational models to the study of epilepsy
is becoming increasingly common. However, many flavors of

computational model exist. The choice of model depends on the
desired level of detail at which the neural system is modeled, the
range of behaviors a model is capable of producing, and the ability
of a model to fit to human or animal data. This study focuses on
comparing models differing in level of detail based on their ranges
of behavior and fits to real data. We introduce a method to system-
atically compare any set of models (including models that differ
from each other in level of physiological detail), as long as all the
model outputs can be expressed as a series of the same kind (e.g.,
time series of averaged membrane potentials of neurons), that can be
further reduced by using a group of quantitative metrics.

For the present discussion, we define a detailed model as one that
represents the electrical activity of neurons by biophysical equations
that evolve physical variables. These models often explicitly represent
both passive membranes and active ion channels within multicompart-
ment neurons that are themselves spatially arranged in a connected
network. The physical, electrical, and anatomic properties of these
models are derived from and verifiable through comparison with elec-
trophysiological and histologic measurements (Traub and Bibbig,
2000). By contrast, we define an abstract model as one that uses a
simplified set of rules that do not model the biophysics directly but
instead represent what is considered a minimal set of essential behav-
iors in a form that is analytically or computationally more tractable. For
example, a neuron may be represented as a unit that integrates inputs
and spikes when it passes a threshold. Neurons may be embedded in a
network topology that trades realism for simplicity. An abstract model
may even consist of a set of coupled equations, each representing a
population of neurons of the same type. Well-known examples of
abstract models can be found in the articles by Wilson and Cowan
(1973), Fitzhugh (1961), Izhikevich (2003), and Ursano and La Cara
(2006). The division between detailed and abstract models is not
clear-cut, because all models are simplifications of the real system;
nonetheless, it is useful to make a distinction between models operating
at different points on the fidelity-tractability spectrum.

Detailed models have the advantage of having close corre-
spondence between model parameters and biophysical parameters,
so that any predictions made by a detailed model are fairly readily
translatable into potential manipulations or tests of the real system.
However, having many parameters can make detailed models hard
to interpret, as a particular behavior could potentially be produced
by many combinations of model parameter values. For understand-
ing how a model’s parameters correspond to its behavior, abstract
models may prove more tractable. Detailed models, being more
biophysically realistic, might also produce a more realistic range of
behaviors than would an abstract model. However, this possibility
has not, to our knowledge, been formally tested.

In the past, comparisons across different computational mod-
els of epilepsy and between computational models and real data
have primarily been descriptive and informal. For example, Lytton’s
(2008) review compares the path to seizure onset in lumped model
of Wendling et al. (2002) with the path to seizure onset in detailed
model of van Dronglen et al. (2005). Based on visual inspection of
plots relating values of excitation and inhibition in the models to
model behaviors, Lytton observes that the path to seizure onset is
qualitatively different across the two models. Although the obser-
vation is highly useful, it is more descriptive than quantitative.
Authors of a computational model often visually compare outputs
from their model to electrophysiological readings from human or
animal models, with a good match taken as evidence in favor of the
model. Often, however, it is unclear whether any systematic method
was used for choosing which model outputs and which human/
animal traces to compare. For example, the reader may be left to
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wonder how many human/animal traces the model was unable to
match (Wendling et al., 2002).

Although systematic comparison of computational models to
each other and to human/animal data is not currently incorporated into
neural modeling methodology, one might expect to find some precedent
in computational modeling literature from other fields. Although a
search in journal databases (specifically, the ISI Web of Knowledge and
Google Scholar) for terms related to comparison/evaluation of models
that attempt to match empirical data yielded few results, the search did
turn up a article by Ortiz et al. (2002) that describes an automated
method for comparison of real protein structures and computational
models’ protein structure predictions. The method addresses the prob-
lem that different models can produce output (in their case, protein
structures) at different resolutions or at different levels of completeness.
Rather than making comparisons based on root mean square distance, their
system exploits a more sophisticated method of aligning structures before
computing distance so that issues of resolution and incompleteness do not
unduly affect goodness of fit scores. As with protein structure comparison,
there are problems with using root mean square distance for epilepsy model
comparison, as discussed in the sections below.

The method introduced in this study has similar intent to that of
the protein structure model comparison by Ortiz et al., particularly in
that it provides systematic quantitative comparison measures and is
suitable for use across models that may vary considerably in form and
in resolution of the output. However, some aspects of our method, such
as description of the size of models’ behavior space, expand the scope
of comparison beyond that of Ortiz et al. to address questions of
particular importance in epilepsy modeling. For example, the range of
behaviors produced by a model is measured, because it is desirable that
the models be able to produce the diverse range of behaviors exhibited
by the mammalian brain, including both nonseizure-like (interictal) and
seizure-like (ictal) activity.

METHODS
In this section, we describe particulars of the detailed and

abstract models used in this study. We also describe comparison data
taken from in vitro mouse recordings. We then present our analysis
pipeline for comparison across models.

Detailed Model
The detailed model investigated in this study is a neocortical

model described by van Drongelen et al. (2004a,b). The model includes
six neuron types, two of which are excitatory (superficial and deep
pyramidal) and four of which are inhibitory (chandelier and three types
of basket). There are 656 neurons in the neocortical network. Each
neuron type is modeled as a set of cell compartments (axon, soma,
initial segment, and/or a variable number of dendrite compartments)
and contains a combination of voltage-dependent ion channels (sodium,
potassium, and optionally persistent sodium, NaP), and the neurons are
spatially distributed according to histologic measurements from the
literature. The neurons connect via synapses (excitatory or inhibitory)
and gap junctions (between inhibitory neurons only). van Drongelen et
al. (2004a,b) have shown that the model can display both normal
nonseizure-like and epileptic seizure-like activity, depending on the
values of the network’s excitation and inhibition strength parameters.

For this study, two versions of the model, one with NaP channels
and one without, were explored. We expected that including NaP would
produce more realistic activity. For each of these two versions of the
model, 49 simulations were run, each with a unique combination of
excitation and inhibition weights: the synaptic coupling weights found
in van Drongelen et al. (2006, Table A1) were scaled by factors ranging
from 0 to 3 in steps of 0.5. All possible pairwise combinations of
excitation and inhibition values were tested. Each model run produced
5 seconds of simulated activity. In each run, one of the cells was

injected with 5 � 10�10 A at time 1 second. The output trace used in
all comparisons was created by averaging the membrane potential of
the cells and downsampling to 1 kHz. Simulations were implemented in
pGENESIS (the Parallel GEneral NEural SImulation System; Bower
and Beeman, 1998) and run on the Jazz computing cluster at Argonne
National Laboratory. The simulations took approximately 200 seconds
to run with NaP version.

Abstract Model
The abstract model investigated in this study was the model from

Izhikevich (2003). This model treats each neuron as a single compart-
ment. Different neuron types are created by randomly varying the four
parameters of a single neuron template. The neurons have no specified
spatial location and are connected all-to-all with random weights, some
of which are excitatory and some of which are inhibitory. Specific
voltage-dependent ion channels are not modeled as in the model by van
Drongelen et al. (2004a,b, 2005, 2006). Rather, a neuron’s membrane
potential is determined based on two ordinary differential equations and
a spike-resetting rule. As with the detailed model, the abstract model
implemented in this study contained 656 neurons. Two versions of the
model were run, one of which was identical to the network of Izhikev-
ich (2003) except that 656 neurons, rather than 1000, were modeled. In
the other version, a uniform 6 milliseconds transmission delay was
introduced for all connections with the expectation that including the
transmission delay would produce more realistic average membrane
potentials. As with the realistic version, there were forty-nine 5-second
runs, each with a unique combination of excitation and inhibition
scaling factors. Because the Izhikevich (2003) model includes random
input to each cell at each time step, no initial current injection was
needed. The membrane potential at each time step (the simulations
occurred at 1 kHz) was averaged across the 656 neurons in the network
to create an average membrane potential time series. Simulations were
implemented in MATLAB and took approximately 10 seconds to run
on an ordinary laptop for the no delay version, which is considerably
faster than the detailed model execution time.

Mouse Recordings
Local field potential recordings of mouse frontal lobe tissue

were used to provide a standard against which the computational
models’ average activations could be judged. The data consisted of
several-minute-long 30 Hz low-pass filtered recordings, during
which a number of experimental manipulations were performed. The
long recordings were broken into ninety-four 5-second chunks, some
of which were judged by visual inspection to be seizure-like and
others of which were judged to be comparable with normal activity
in human tissue.

Model Comparison Pipeline
Because of the disparate characters of the systems to be

compared, a number of potential issues arise when attempting the
cross-model comparison. These include choice of the range of model
parameters to be included, normalization of waveforms, reconcilia-
tion of sample rates, choice of signal duration, sensitivity of root
mean square error to particulars of waveform shape, inappropriate-
ness of root mean square error for comparison of analog and binary
models, and choice of alternatives to root mean square error. The
components of the pipeline described next are designed to address
some of these issues within a modular framework that enables
swapping of components.

Primary Metrics
To focus on characteristics of the signals that were likely to

be most relevant to characterizing the features of network activity
relevant to epilepsy, we extracted eight primary metrics from the
time series. Before calculating these metrics, signals were first

A. S. Warlaumont et al. Journal of Clinical Neurophysiology • Volume 27, Number 6, December 2010

Copyright © 2010 by the American Clinical Neurophysiology Society480



low-pass filtered at 30 Hz so that signals from the computational
model simulations would be comparable with the low-pass filtered
mouse tissue recordings. Also, to exclude any initial transients in the
computational model simulations, we used only the portion of each
time series from 1.5 to 5 seconds.

The first five metrics were taken from the power spectrum of
each time series. These included the frequency and the power amplitude
of the peak in the power spectrum. They also included the power
present in the following classic EEG frequency (f) bands: � (4 Hz � f �
8 Hz), � (8 Hz � f � 12 Hz), and � (12 Hz � f � 30 Hz) (van
Drongelen, 2007). The final three metrics were Hjorth’s activity, mo-

bility, and complexity (Hjorth, 1970)—classic EEG features. These
features are calculated from the standard deviation and the first and
second derivatives of the standard deviation of the time series.

Comparisons were also performed based on the raw time
series to test the extreme case where no derived metrics are used
at all. In addition, comparisons were performed based on the raw
time series to test the extreme case where no derived metrics are
used at all.

Comparison in Principal Components Space
The principal components (PCs) and their eigenvalues were

computed over eight-element vectors containing the primary metric
data (or 3,500-element raw time series vectors, in the case of the
supplementary analysis described below). The calculation was per-
formed in R, using the singular value decomposition-based prcomp
function (R Development Core Team, 2009). We assigned each simu-
lated or measured time series a pair of coordinates calculated by rotating
and projecting the time series onto the first and second PC vectors
(which we will also refer to as derived features). This procedure
maximizes the variance observed across the time series while satisfying
the constraint that only two dimensions may be used, enabling mean-
ingful visualization of the simulated or measured network behaviors. In
addition, several quantitative measures were calculated in this PC
behavior space. We quantified the magnitude of the range of behaviors
exhibited by a model (computational or animal) by calculating (1) the
area in PC space of the convex hull defined by all the simulations from

FIGURE 1. Data plotted in behavior space when principal components are calculated based on the eight metrics derived
from simulated or real-time series. The six panels show detailed model (A) without and (B) with NaP; abstract model (C) with-
out and (D) with delay; (E) mouse tissue recordings; and (F) all models.

TABLE 1. Quantitative Measurements Based on the Data’s
Positions in Behavior Space Based on All Eight Derived
Features

Model Version
Convex Hull

Area

Mean Distance
Within the

Model Version
Mean Distance
to Mouse Data

Detailed, no NaP 24 2.7 2.6

Detailed with NaP 20 2.9 2.8

Abstract, no delay 15 2.5 2.5

Abstract with delay 34 2.0 2.2

Mouse tissue 34 2.4 2.3
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the model or (2) the average pairwise Euclidean distance in PC space
between all the simulations from the model. In addition, we calculated
the overlap between two sets of time series (such as that between a
model version and the mouse tissue recordings) by taking the average
pairwise distance in PC space between the time series in one set and the
time series in the other set.

RESULTS
Figure 1 shows the data from each of the computational and

animal models plotted in the behavior space defined by the first two

derived feature vector PCs. Note the considerable overlap in this
space between points representing simulations from the four com-
putational model versions (two detailed versions and two abstract
versions) and from the mouse tissue recordings. Table 1 gives
quantitative measurements of the range of each model’s behaviors
and of the similarity between each computational model’s behaviors
and that of the mouse recordings.

Figure 2 and Table 2 give visualizations and quantitative
measurements that resulted when principal components analysis was
performed on the raw time series (i.e., no metrics were calculated).
Notice that the variability across the computational models is dis-
tributed across the first PC but not across the second, whereas most
of the variability in the mouse tissue recordings is distributed across
the second PC but not the first. This nonoverlap between distribu-
tions makes comparison between the computational models and the
mouse data difficult. Analysis based on raw time series yielded the
result that all computational model data are judged as being far away
from the mouse data. The only exception was the no delay version
of the abstract model, which tended to cluster around the origin in
PC space, exhibiting little variance along either PC.

Based on the figures and quantitative range measures (convex
hull size and mean distance between points within a model version)
from the PC analysis computed over the eight primary metrics, the
computational models and the mouse data produced roughly the
same range of behaviors in PC space. In addition, all the computa-
tional models were comparable in their average distance to points in

FIGURE 2. Data plotted against the first two principal components calculated based on raw time series (no metrics
calculated). The six panels show detailed model (A) without and (B) with NaP; abstract model (C) without and (D) with
delay; (E) mouse tissue recordings; and (F) all models.

TABLE 2. Quantitative Measurements Based on the Data’s
Positions in the Space Defined by the First Two Principal
Components for Raw Time Series (No Derived Features
Used)

Model Version
Convex Hull

Area

Mean Distance
Within the Model

Version
Mean Distance
to Mouse Data

Detailed, no NaP 218 59 51

Detailed with NaP 321 60 52

Abstract, no delay 542 12 21

Abstract with delay 5106 46 45

Mouse tissue 13018 26 26
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the mouse data, and these distances were comparable with distances
among data points within the mouse recordings.

DISCUSSION
In this article, we introduced a method for systematically

comparing very different computational models of epilepsy. The
method constructs a vector of high-level metrics by applying a
prescribed set of analyses on each time series taken from real tissue
and/or from models to be compared. Principal components analysis
is then used to reduce the collection of primary metrics to a smaller
set of derived features. This procedure allows real and simulated
data, possibly from very different underlying models, to be visually
and quantitatively compared in a low-dimensional behavior space.

We applied this method to compare simulations from a
detailed neural model of brain dynamics, simulations from an
abstract neural model of brain dynamics, and local field potential
recordings from a mouse tissue sample that exhibited both nonsei-
zure-like and seizure-like dynamics. Counterintuitively, it seems
that the abstract neural model investigated here may produce as
broad a range of behaviors, as measured in the metric-based PC
space, as the detailed model we investigated. Thus, at least for the
range of excitation and inhibition strengths that we explored, sim-
plification in form does not necessarily lead to a reduced range of
behaviors. The abstract model also produced behaviors that were
comparable with the detailed model in their degree of similarity to
the mouse data. This result suggests that the advantages and disad-
vantages of detailed versus abstract modeling approaches may lie
more at the methodological level, being related to the tradeoff
between computational/development efficiency and isomorphism
with the structure of the system being modeled, rather than being
related to the ability to match behavior of a real system.

A number of future research and development directions are
worth pursuing. One is the development of a systematic method for
selecting which primary metrics to include. Our conclusions are
contingent on selection of relevant primary metrics, the combination
of which the method depends on to discriminate between various
behaviors (for EEG-like signals: quasi-periodic oscillations, sharp
waves and spikes, bursts, etc.). In this study, we have chosen a
subset of popular and well-regarded automated metrics used by
epileptologists and epilepsy researchers to characterize EEG activ-
ity, and we assumed their appropriateness for comparison of ictal
and interictal dynamics. In some cases, the metrics of interest might
be known a priori. In other cases, however, many possible metrics
may be valuable, and an objective and systematic method for
selecting among them would be worthwhile.

Additional methods for computing range of behavior within a
model and similarity of behaviors might also be worth exploring,
because the convex hull and mean pairwise distance measures are
sensitive to outliers—a feature that may be undesirable under some
circumstances. For example, as Fig. 1D shows, the polygon enclos-
ing a set of data points is sometimes far from being uniformly
populated. For some purposes, relaxing the constraint that a hull be
convex might prove helpful (although relaxation of that constraint
complicates the process of determining the hull boundaries).

In future, we hope that similar systematic model comparisons
will explore more models and a larger range of parameter values
within those models (possibly integrating this comparison approach
with parameter search approaches), and that other types of outputs
will be compared (such as raster plot characteristics or individual
neuron properties) beyond the average activation time series com-
pared here.

Finally, Ortiz et al. (2002) provide an example of formal
comparison with human similarity judgments in the field of protein
structure modeling. It would be interesting to formally compare the
distances between simulations in the behavior space as calculated
here with similarity judgments and ictal versus interictal classifica-
tions made by human EEG experts.
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