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Abstract—Over the course of the first four years of life, the
proportion of children’s vocalizations that are speech-related
increases steadily. The rate of this growth is reduced for children
with autism spectrum disorder (ASD) and for children from
households with relatively lower socioeconomic status (SES). The
present study attempts to model this set of findings, treating
adult responses as reinforcers of child behavior. The model starts
with a 50% chance of producing a speech-related vocalization
and gradually increases this probability by updating its speech-
related vocalization and not-speech-related vocalization probabil-
ities each time a response is received. Numbers of vocalizations
per day and rates of adult responding to the two vocalization
types are drawn from human data to create high SES typically
developing (TD), high SES ASD, low SES TD, and low SES ASD
versions. The model shows growth in speech-related vocalizations
that matches well to that observed for the human children and
that matches the differences observed across clinical and SES
groups. Some aspects of speech-related vocalization development
are not well accounted for by the model; possible explanations
and extensions are proposed.

I. INTRODUCTION

Over the first few years of life, children’s vocal utterances
become more and more adult-like. This increase in com-
munication abilities is affected by clinical differences that
originate within the child. For example, children with or at
heightened risk for autism spectrum disorder (ASD) exhibit
reduced increases with age in speech-related vocalization rate
[1], [2], delayed achievement of babbling milestones [1], [3],
[4], delayed development of mature vocalization acoustics
[5], delayed acquisition of adult-like prosody [6], and slower
development of language more generally [7]. Development of
communication abilities is also affected by factors originating
outside the child. In particular, higher socioeconomic status
(SES) is associated with faster child language development
compared to children from families of lower SES [8]-[10].

In a previous study [2], we too found an increase in
speech-related vocalization rate as a function of age, with
this growth being slower both for children with ASD and for
children of lower SES (Fig. 1). The study analyzed the child
and adult vocalizations produced during daylong naturalistic
audio recordings. The child and adult vocalizations were au-
tomatically tagged and child vocalizations were automatically
classified by the LENA system [5], [11], [12] as either speech-
related (speech, babble, song, etc.) or as not-speech-related
(cry, laugh, burp, effort grunt, etc.).
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It was proposed that the growth in speech-related vocaliza-
tion over age as well as the ASD- and SES-differences in this
growth could be explained by a social feedback loop involving
the micro dynamics of interaction (see also [13]). In the pro-
posed feedback loop, adults respond contingently to children’s
vocalizations and children’s vocalizations are in turn contin-
gent on previous adult responses (Fig. 2). Specifically, adult
responses are more likely for speech-related vocalizations than
for not-speech-related vocalizations and a child’s vocalization
is more likely to be speech-related than not-speech-related
if the child’s previous speech-related vocalization received
an adult response. Adult responses were operationalized as
any adult vocalization starting within a 1-second window
following the offset of a child vocalization. Analysis of the
responses to child vocalizations and of children’s responses to
adult responses provided support for the two contingencies of
adult on child and of child on adult (for related experimental
findings, see [14]).

Two aspects of the feedback loop were found to differ
in ASD vs. TD. First, children with ASD produced fewer
vocalizations of any sort. This would be expected to reduce the
number of learning opportunities for the ASD group (see also
[15] and [16]). Second, adult responses to the children with
ASD were less contingent on child vocalization type, i.e., adult
response likelihoods were more similar across vocalization
types. This would also be expected to negatively impact
the children’s growth in speech-related sounds, because the
feedback they received was less favoring of speech-related
sounds. The same two differences were also found for children
of lower socioeconomic status (as indicated by maternal ed-
ucation level) compared to children of higher socioeconomic
status, consistent with other previous studies that have found
SES differences in kinds of parent speech input to their chil-
dren, as well as in parent-child interactions [8], [9]. Different
input patterns could derive from differences across the SES
groups in parents’ general conversational styles, beliefs about
how much their behavior affects their children’s development,
economic stresses, as well as other factors [17].

We built a simple computational model to verify that such
contingencies could in principle lead to the differences in
growth of speech-related vocalizations across groups (see
the Supplemental Online Material of [2]). Indeed, the model
showed slower learning when child vocalization rate and adult
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The proportion of vocalizations produced by human children that are speech-related increases as a function of age. The proportion of vocalizations

that are not-speech-related decreases. The speech-related vocalization increase is faster for TD children (blue) than for children with ASD (red) and is faster
for children from families of higher socioeconomic status (left) than for children from families of lower socioeconomic status (right). Data for the ASD group
start at 16 months of age due to limits on how early the disorder can be identified. Note that the parameters used in the present modeling study and the
measures against which the model is compared are based on a subset of this sample that was matched for gender, age, and SES between the TD and ASD

groups. This figure is adapted from [2].

Contingency of adult response
on child vocalization type

N

Child vocalization Adult response

N

Contingency of child vocalization
on the previous adult response

Fig. 2. Feedback loop proposed as a mechanism underlying the patterns
of growth in Fig. 1. When a child produces a vocalization and subsequently
receives an adult response, this affects the child’s future vocalizations. Adult
responses are contingent on child vocalization type, such that speech-related
child vocalizations are more likely to receive a response than not-speech-
related ones. When children’s subsequent vocalizations are biased toward
those types that previously received responses, over time, speech-related
vocalizations will become progressively more prominent. Differences in this
feedback loop, such as fewer child vocalizations, reduced adult response rates,
reduced contingency of adult responses, or reduced contingency of child
behavior (i.e. child learning), due to conditions such as ASD or low SES,
should result in differences in child speech development. This figure is adapted
from [2].

response probability parameters were matched to those of the
ASD group than when matched to those of the TD group. The
present study extends that initial modeling effort. The model
and results are described in much greater detail, visualizations
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of the model and its performance are provided, and the model
is extended to address SES differences in addition to TD-ASD
differences.

The next section will present how the model works, then
compare it to two other modeling approaches, then describe
how different versions were created and how the model was
tested. In the Results section, the model is evaluated in two
ways: (1) its production of speech-related versus not-speech-
related sounds across development is compared to what was
observed for human children and (2) contingency of child
vocalization type on most recent adult response is compared to
that observed in human data. This is followed by a discussion
of the implications of the model for understanding how chil-
dren learn to adapt their vocal behaviors using contingent adult
responses and some suggestions for specific future directions.

The model code and simulation data can be downloaded
from http://dx.doi.org/10.5281/zenodo.11622

II. METHODS

A. Learning algorithm

A schematic diagram of how the model works is provided
in Fig. 3. In each simulation, the model’s initial probability of
producing a speech-related vocalization, P(sp,0), and initial
probability of producing a not-speech-related vocalization,
P(nsp,0), are set to:

P(sp,0) = P(nsp,0) = .5. )
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Schematic diagram of the computational model. Each iteration starts with the child making a vocalization. That vocalization is probabilistically

determined to be either speech-related or not-speech-related. Whether or not the vocalization receives an adult response is also probabilistically determined.
If a response is received, the probability of producing the sound type that preceded that response is incremented by a small amount, and then the child vocal
type probabilities are rescaled. This whole process is repeated many times, corresponding to several years’ worth of child vocalizations. The parameters that
were taken directly from the human data and that differ across groups are shown in blue. n is the index of the current child vocalization. P(sp,n) is the
probability of vocalization n being speech-related. P(nsp,n) is the probability of vocalization n not being speech-related. P(r|sp) is the probability of
adult response when the child vocalization is speech-related and is taken from the human data. P(r|nsp) is the probability of adult response when the child
vocalization is not-speech-related and is also taken from the human data. « is the one free parameter in the model and determines the learning rate. IV is the
total number of vocalizations the model produces. The number of vocalizations per day is taken from the human data.

The model then undergoes a number of vocalization
episodes, N, where

N=3-365-v 2)

and v is the number of vocalizations produced per day. Thus,
N is three years’ worth of vocalizations. v was taken directly
from the human data (see Table I) and was set differently
depending on the group being simulated (described in section
C below).

At each vocalization episode, n, the vocalization is ran-
domly chosen to be speech-related or not-speech-related with
probability P(sp,n) and P(nsp,n), respectively. It is then
randomly determined whether the vocalization should receive
an adult response, with P(r|sp) being the probability of an
adult response to a speech-related vocalization if the vocaliza-
tion was speech-related and P(r|nsp) being the probability of
an adult response if the child vocalization was not-speech-
related. P(r|sp) and P(r|nsp) are taken directly from the
human data and are set differently depending on the group

reinforced behavior, followed by

P'(sp,n+1)
P 1) = 4
(sp,n+1) Plspn+ 1) 1 Plnsp.n) “4)

and
P(nsp,n

Plnsp.n+1) = P'(sp,n+1)+ P(nsp,n)’ ®)
which normalize the probabilities of producing each vocaliza-
tion type. « is the one free parameter in the model and was
set to 0.000008, which in pilot work was found to yield final
P(sp,N) and P(nsp, N) values that were roughly similar in
magnitude to the P(sp) and P(nsp) values observed for the
human children’s recordings from ages 3;0-3;11 (see Fig. 1
and the rightmost column of Table I). Similarly, if the model
produces a not-speech-related vocalization and is reinforced,
then the update equations are:

P'(nsp,n+1) = P(nsp,n) + « (6)
P'(nsp,n+1)

being simulated (see Table I and subsection C). P(nsp,n+1) = P(sp,n) + P'(nsp,n+ 1) )
If the model produces a speech-related vocalization and is p
reinforced, then P(sp,n + 1) and P(nsp,n + 1) are updated P(sp,n+1) = (sp,n) (8)

according to the following difference equations:
P'(sp,n+1) = P(sp,n) + 3)

which increments the probability of producing the just-
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P(sp,n) + P'(nsp,n+1)

If the model is not reinforced, then P(sp,n + 1) = P(sp,n)
and P(nsp,n + 1) = P(nsp,n). In other words, no learning
takes place.
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TABLE I
AVERAGE HUMAN AND MODEL VOCALIZATION RATES, ADULT RESPONSE PROBABILITIES, AND CHILD VOCALIZATION TYPE PROBABILITIES. SQUARE
BRACKETS GIVE 95% CONFIDENCE INTERVALS.

Group Vocalizations per day (v)  P(r|sp) P(r|nsp) Initial model P(sp,0) Final model P(sp, N)  3-year-old human P(sp)
High SES TD 2,796 214 .149 5 .830 [.829,.832] .804
High SES ASD 2,149 205 154 5 721 [.720,.723] 748
Low SES TD 1,994 192 130 .5 748 [.746,.750] 766
Low SES ASD 2,044 173 133 5 .673 [.671,.675] 674

The whole sequence of steps is repeated for three years’
worth vocalization episodes, i.e. for n =0,..., N — 1.

B. Comparison to other approaches

Prior to developing this particular model, adaptations of
commonly used reinforcement-based models were tried. As
described in the following paragraphs, these approaches did
not match the human trajectory of increasing speech-related
vocalization very well. The first approach that was tried was
a Rescorla-Wagner (RW) model adapted for operant condi-
tioning. The second approach was based on Q-learning from
the reinforcement learning literature. In all cases, initial P(sp)
and P(nsp) were set to .5.

The RW model is a model of classical conditioning [18]. It
has recently been successfully applied to explain findings from
human child and adult word learning experiments [19], [20]. In
order to adapt it for our problem, which is an operant learning
problem rather than a classical conditioning one, the model
was set to always have two possible contexts, speech-related
vocalization and not-speech-related vocalization. The model
entered each context with probability P(sp) and P(nsp),
respectively, and then observed whether or not a response
was given. From this, the RW model learned to associate
each context with a reward probability. These associations
were stored as updates to P(sp) and P(nsp). In the end,
this model ended up matching its probability of producing
a speech-related vocalization, P(sp), to the relative balance
of P(r|sp) to P(r|nsp). This resulted in a much lower final
P(sp) than was observed for the human data, and also resulted
in quite suboptimal rates of receiving reward.

In adapting Q-learning [21] to the present problem, it
seemed most sensible to start off assuming there was only one
state. The value of ) for each of two policies, (1) producing
a speech-related vocalization and (2) producing a not-speech-
related vocalization, was the thing to be learned. The model
chose at each vocalization episode to follow the policy with
the highest (). Perhaps unsurprisingly in retrospect, this model
converged very quickly, within a few iterations, to a P(sp) of
1 and a P(nsp) of 0. This very fast learning did not match the
much more gradual learning exhibited by the human children.

C. Model versions and evaluation

Four versions of the model were created, a high SES
typically-developing (TD) version, a high SES autism spec-
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trum disorder (ASD) version, a low SES TD version, and a
low SES ASD version. In a subsample of the human data that
had been matched across TD and ASD groups for gender,
SES, and age [2], each of the four groups had a different
mean number of child vocalizations per day, a different mean
probability of adult response within 1 s for child speech-
related vocalizations, and a different mean probability of adult
response within 1 s for not-speech-related vocalizations. These
average values for the human data were used to create each
model version’s v, P(r|sp), and P(r|nsp) (see Table I).

100 simulations of each model version were run. Across all
the simulations for a given group, the average final probability
of producing a speech-related vocalization, P(sp, N), was
obtained, as was its 95% confidence interval. These final
probabilities were then compared to the same probabilities
for the older, 3-year-old (3;0-3;11) child recordings from the
matched human sample.

The contingency of the child vocalization type on whether
or not the previous speech-related vocalization received a
response was also determined for each simulation, using the
same method as the previous study with human children [2].
Specifically, child contingency, C. was defined as

_ S0 [m(n) € {spl(rlsp)}
© 001+ 307 [m(n) € {sp|(r|sp), nsp|(r]sp)}]
B SN m(n) € {spl(=rlsp))]

0.01+ 32,5 [m(n) € {sp|(=r|sp),nspl (-rlsp)}]’
where n is the vocalization episode number, N is the total
number of vocalizations produced across the entire simula-
tion, and m(n) is the combination of information about the
current vocalization type and whether its most recent speech-
related vocalization received a response. sp|(r|sp) is a speech-
related vocalization for which the most recent speech-related
vocalization received a response, nsp|(r|sp) is a not-speech-
related vocalization for which the most recent speech-related
vocalization received a response, sp|(—r|sp) is a speech-
related vocalization for which the most recent speech-related
vocalization did not receive a response, and nsp|(—r|sp) is
a not-speech-related vocalization for which the most recent
speech-related vocalization did not receive a response. Square
brackets indicate that the value within the summation is 1 if
the expression within the brackets is true and O if it is false.
The addition of 0.01 to each denominator prevents division

(©))
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by zero. A positive C, indicates that child vocalizations were
more likely to be speech-related when the most recent child
speech-related vocalization received a response than when it
did not receive a response.

III. RESULTS

Fig. 4 presents the average change in each version of the
model’s P(sp,n) as a function of age. The TD simulations
exhibited faster growth in speech-related vocalization pro-
portion compared to the ASD simulations. In addition, the
high SES simulations exhibited faster growth than the low
SES simulations. At the end of training, the high SES TD
simulations had the highest P(sp), averaging .830 (compare
to .804 for the human data), and the low SES ASD simulations
had the lowest P(sp), averaging .673 (compare to .674 for the
human data); see Table I. The high SES ASD and low SES
TD had intermediate final P(sp), at .721 and .748, respectively
(compare to .748 and .766 for the human data). These results
match the human data quite well, having the same ordering
of P(sp) across the four groups and a decent quantitative fit
as well. Note that the human study used linear regressions
to characterize the change in P(sp) with age, whereas the
model’s growth in P(sp), while it could be reasonably well
approximated by a linear function within the observed time
range, is in fact nonlinear, decreasing in slope over time.

With regard to the contingency of child vocalization type on
immediately previous adult response, C., the model did not
provide as good a fit to the human data. The C. values reported
for human children in [2] were the same for both ASD and
TD groups, 0.042 (this was calculated over the whole dataset,
not the matched subsample, and values were not broken down
by SES). For both groups this C. was highly statistically
significantly greater than zero. No statistically significant
relationship between C,. and ASD or SES was detected in the
human data. In contrast, the model had C, values of 0.000 for
all four groups, indicating a lack of a measurable local child
contingency on previous response. One possible reason for
this is that the model’s learning rate, c, was very low, so that
learning from any single vocalization episode had only a tiny,
hard to detect effect on P(sp). In support of this explanation,
when the learning rate was increased to 0.2 and the model was
run for only one day’s worth of vocalizations (which was all
that was needed to reach final P(sp) values similar to the 3-
year-old human children), the model did exhibit a positive C..
The mean C, values [and their 95% confidence intervals] for
this fast-learning version were 0.041 [0.015,0.066] for the high
SES TD group, 0.057 [0.028,0.086] for the high SES ASD
group, 0.034 [0.010,0.058] for the low SES TD group, and
0.043 [0.020,0.066] for the low SES ASD group. Thus, when
the learning rate was sped up (and number of vocalization
episodes correspondingly decreased), the model did exhibit
the child contingencies observed in the human data.

IV. DISCUSSION

Considering the simplicity of the model presented here, it
accounts for the change in human children’s speech-related
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vocalization probability quite well. The model increments
the probability of producing a given vocalization type each
time that vocalization type is responded to. It makes no
changes to its behavior when a vocalization does not receive
a response. When adult response probabilities for speech-
related sounds are higher compared to response probabilities
for not-speech-related sounds, as has been observed for human
adults interacting with young children, this leads to a gradual
increase over time in the child’s production of speech-related
vocalizations compared to not-speech-related vocalizations.
The model’s adult response probabilities and number of vo-
calization episodes were set to the exact same values as were
observed in a sample of daylong audio recordings of human
children ages 1;6 to 4;0. Four groups of children were modeled
in this way: high SES TD, high SES ASD, low SES TD, and
low SES ASD. The model’s final speech-related vocalization
probabilities for each group matched quite well to those for
the 3-year old human child recordings. Small differences in
vocalization rate and in adult response probabilities led to
diverging behaviors of the four groups over the developmental
period studied here [2], [15], [16], [22], [23], with both ASD
and low SES reducing the speech development rate.

One aspect of the human data that the model had difficulty
fitting is the local contingency of child vocalization type
on whether the most recent child speech-related vocalization
received a response (C.). The model could match the human
data with regard to this contingency, but only when the
learning rate was increased so much that growth in P(sp)
was unrealistically fast. One possible explanation for how it
is possible for human children to have a gradual increase
in speech-related vocalization likelihood over the course of
years yet also show a robust local contingency on recent adult
responses is that children are learning at a relatively fast rate
in the short term, so that local child contingencies on adult
response are apparent, and a forgetting or decay process is
also at play, causing the overall learning rate to be slower.
This idea could be tested by altering the model to give it a
larger learning rate («) and adding in a decay of P(sp) and
P(nsp) back toward .5. An alternative possibility is that the
human C. values are reflecting some set of processes other
than rapid short-term learning.

The decision to set the probabilities of the two vocalization
types equally, and to set them to the same values across groups,
was the observation from Fig. 1 that at 50 weeks, P(sp) in the
human data is about .6 and P(nsp) is about .4. Extrapolating
from this data makes it appear plausible that at birth the two
probablilities are approximately equal. Testing the validity of
this assumption would require a study of the proportions of
each type of vocalization in human neonates. Inputting initial
P(sp) and P(nsp) values that are drawn directly from human
data should affect the simulation outcomes. Seeing how this
affects the fit to human speech-related vocalization growth is
an important future direction.

It should be pointed out that across the four versions of
the model, there were no differences in child learning rate.
This might be surprising to some readers, since children with
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Change in probability of speech-related vocalization, P(sp), and probability of not-speech-related vocalization, P(nsp), as a function of age in

the four versions of the model. The curves represent means over 100 simulations of each model version. TD versions end up with higher speech-related
vocalization probabilities than ASD versions, and high SES versions end up with higher speech-related vocalization probabilities than low SES versions.
Compare these simulation results to Fig. 1, which shows corresponding human data.

ASD might be expected to learn more slowly from social
responses than TD children, given their differences in social
orienting [15], [22], [24]-[26]. The decision was motivated
by the fact that in the previous study with human children,
no differences in the local contingency of child behavior on
previous adult responding were found, either across groups or
as child age changed. That null result could either have been
due to a lack of statistical power (second-order contingencies,
and differences in them across groups, are harder to detect
than first-order contingencies) or due to a true similarity across
children in their learning from contingent adult responses.
Conservatively we can say that differences in adult response
rates and in child vocalization rates are sufficient to generate
the observed differences in growth of child speech-related
vocalization probability. Future work should experiment with
different child learning rates, possibly changing over time, to
see how these affect the model’s fit to human data. Relatedly,
in the human study, adult response rates were found to change
over time, and this should eventually also be incorporated into
the model.

In our pilot work before setting up the present version of the
model, RW and Q-learning models were created and tested.
The RW model ended up converging to P(sp) levels that
were far from optimal in terms of obtaining many responses,
and instead matched the relative adult response rates. The
Q-learning model on the other hand converged too quickly
to optimal performance. This led to the development of the
present model, which turned out to be quite a better fit to
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the human data. Nevertheless, the particular setups we chose
for the RW and Q-learning approaches were not the only
conceivable ones. For instance, we could have decided to
include more than one state in the Q-learning model, where
the state would include information about the model’s previous
behaviors and perhaps about recent adult behaviors. This might
have resulted in a model that fit the human data better. If so, it
would be interesting to determine if such a model has anything
in common with the present one. Further exploration of various
reinforcement-based approaches might yield novel insights
about the relationship between these various reinforcement-
focused modeling approaches and between the human speech-
related vocalization development phenomena studied here and
other animal learning phenomena.

Finally, the model does not consider any of the physiological
details of children’s nervous systems, vocal tracts, or other
body parts. Many other computational models have been
developed to further our understanding of how children learn
to control their vocal tracts and how they learn to combine
speech sounds to construct words and sentences (e.g., [27]-
[37]). In many cases, these other models explicitly aim to
address processing at a neural level. The main strengths of the
present work are that it relates very closely to data from real
children and it presents a general iterative learning method
that is suitable for learning from contingent responses in a
manner that is consistent with the rates at which children learn.
It might therefore serve as a guide for future work on more
detailed models in order to include realistic social response
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rates and learning rates while at the same time including more
specific neural and physiological bases for the child behaviors
and for the learning mechanisms. For example, would existing
neural network models of learning to produce speech sounds

via

reinforcement, such as [35] or [36], if given realistic

numbers of trials and adult reinforcement rates, also yield good
fits to human data? Relatedly, future extensions of this work
both on the human side and on the modeling side should take
into account more detailed information about the acoustics and
semantics [38] of child and adult vocalizations.
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