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I. INTRODUCTION 

Reward-modulated Hebbian learning is a biologically plausible neural learning mechanism that has been previously applied to 
a variety of learning tasks. For example, recent work used reward-modulated spike timing dependent plasticity (STDP) to help 
explain how infants learn to produce syllabic babbling [1]. This project attempts to extend this learning mechanism to a new 
domain of infant motor development, shaking a rattle. The experiment transduces neural spike trains to adjust frequency of 
sinusoidal movement around a robotic arm’s articulation point. Reinforcement given when the volume, defined as the root mean 
square (RMS) amplitude, of sound made by a rattle attached to the robot arm exceeded the mean RMS of recent trials.  

II. METHODS 
The robotic arm was constructed from 3D printed components on a PVC frame. Movement is controlled by a HiTEC HS-311 

servo and Arduino microcontroller (Fig. 1). The Arduino waits for serial commands from MATLAB, using ArduinoIO [4]. A 
Bright Starts Rattle & Shake Barbell rattle was attached to one end of the arm and a counterweight was attached to the other 

         

The neural network consisted of a reservoir of 1000 Izhikevich spiking neurons (800 excitatory, 200 inhibitory) with 100 
randomly assigned synaptic connections outgoing from each neuron to other reservoir neurons [3], plus two motor output sinks 
with 50 motor neurons each. 100 excitatory reservoir neurons were fully connected to all the motor output neurons. After each 
second of simulated neural activity, the total number of spikes in each output group during the previous 900 ms were counted. 
The first group of output neurons preferred no movement and the second group preferred high frequency movement. The 
frequency, 𝑓, of the arm's back-and-forth movement was a scaled average of the two motor neuron groups' movement 
preferences, weighted by their spike counts (scaling parameters were chosen based on pilot experiments): 

𝑓   =   10 ∙ !"∙!"#$!  !  !"#$%  !"#$%
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− 140   +   7. 

The servo's target position, y, was then calculated according to:  

  𝑦   =   25𝑠𝑖𝑛 !"#
!"#

+ 120, 

where a y of 0 corresponded to the rattle being at the topmost point and 180 corresponded to it being at the bottommost point. x 
increased in increments of 1 from 1 to 100. Upon every increment of x, y was sent to the Arduino microcontroller, and the 
MATLAB control was paused for .03 s before making the next increment. During the arm movement, sound was recorded from 
the internal microphone of the MacBook Pro controlling the simulations. The laptop was positioned with the microphone near 
the location of the rattle. Root mean square amplitude (RMS) of the sound was calculated: 

 𝑅𝑀𝑆   =    !!(!)!
!!!

!
, 

where A is the audio waveform, t are the samples in the audio recording time series, and T is the total number of samples. Each 
sound was 3.3 s and the audio sampling rate was 44.1 kHz. Although the servo contributed some sound to the RMS value, pilot 
explorations indicated that rattle shaking reliably led to larger amplitude sounds being superimposed on those servo-generated 
sounds. If RMS was greater than the average RMS of the previous 10 trials, the model was rewarded, which corresponded to a 
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Fig 1: The robotic arm 
(left). Schematic of the 
electronic and neural 
system (right). 
 



 

 

spike in DA. The presence of DA increased the magnitude of STDP. Learning via DA-modulated STDP took place only at 
connections between the reservoir and the output motor neurons; all connections within the reservoir remained static at randomly 
initialized values. 

We performed 10 runs of the model, each lasting 300 simulated seconds. For each run, we also ran a yoked control model, 
which had independent random weight initializations and random inputs, but had rewards corresponding to one of the 10 RMS-
reinforced runs. The RMS-reinforced and yoked control runs were interleaved. Both the arm apparatus and computer were 
securely mounted to a desk and remained so for all runs. Runs took place in an unoccupied room to minimize environmental 
noise, although sounds from air vents, a refrigerator, automatic blinds, and computers were present.  

III. RESULTS 
Fig. 2 a and b show the servo control parameter, f, and the resulting RMS for Run 4 and it's yoked control. Over time, the 

RMS-reinforced run shows increasing RMS as well as increasing f; these change little for the yoked control. Fig. 2 c shows a 
linear model of the changes in RMS across all the RMS-reinforced and the yoked control runs. A linear mixed effects model 
indicated that RMS-reinforced models had significantly higher RMS values than the yoked control models, β = -0.73, p < .001, 
and increasing simulation time corresponded to higher RMS, β = .26, p < .001, where β is the standardized regression coefficient. 
There was a significant interaction between simulation time and simulation type, with the RMS-reinforced simulations increasing 
RMS more than the yoked control simulations, β = -0.20, p < .001. Fig. 3 d shows the relationship between f and RMS. Higher 
frequencies produce louder volumes, though there is a ceiling effect beginning at around f  > 12. 

 
IV. CONCLUSIONS AND FUTURE DIRECTIONS 

We presented an initial model of infant rhythmic rattle shaking. Frequency oscillatory movement by a robotic arm was 
controlled by a spiking neural network; high sound amplitude led to immediate dopamine reward, increasing the network's STDP 
learning rate. Sound amplitude increased over time compared to yoked control simulations. Future research should explore 
whether the form of movement can be itself learned rather than assuming oscillatory movement, and movement dynamics should 
be compared to human data. Variations in the neural network architecture, such as biologically plausible architectures where 
dopamine reflects reward prediction error, would also be good to explore. Other models of auditory processing and of intrinsic 
reward, e.g. using more sophisticated notions of auditory saliency or taking into account the formation of auditory-motor 
correspondences should also be explored. Finally, future work should aim to combine models of rhythmic vocal development 
and rhythmic limb movement development, to help account for the close relationship between the two in human infancy [5,6,7]. 
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Fig 2: Run 4's (a) 
and its yoked 
control's (b) 
control frequency 
and RMS data. (c) 
Linear model of 
the change in 
RMS over time for 
reinforced vs 
yoked runs. (d) 
The relationship 
between f and 
RMS. 
 


